Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds.

Tytuł :
Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds.
Autorzy :
Pinho, Inês A.
Lopes, Daniela V.
Martins, Rui C.
Quina, Margarida J.
Pokaż więcej
Temat :
*Phytotoxicity
*Plant-soil relationships
*Germination
Plant phenols
Biological assay
Źródło :
Chemosphere. Oct2017, Vol. 185, p258-267. 10p.
Czasopismo naukowe
The main objective of this work is to evaluate the phytotoxicity of olive mill solid wastes (OMW) produced in two different centrifugation technologies and also the toxicity associated with specific phenolic compounds. Two samples of waste were collected in two-phase (2P-OMW) and three-phase (3P-OMW) centrifugation olive oil production processes, and cress bioassays with Lepidium sativum L. were employed to evaluate phytotoxicity. Although both OMW have similar total phenolic content (TPh), results confirmed that 2P-OMW is more phytotoxic than 3P-OMW. When extracts from 2P-OMW at liquid to solid ratio of 10 L kg −1 were applied none of the seeds germinated, i.e. germination index ( G I ) was 0%, while for 3P-OMW GI was 94.3%. Growth tests in soil and mixtures with OMW also led to more favorable results for 3P-OMW, whereas worse results than those obtained in the control experiments were observed. In order to discriminate the individual influence of eleven phenolic compounds, gallic acid, protocatechuic acid, cinnamic acid, syringic acid, 3,4,5-trimethoxybenzoic acid, 4-hydroxybenzoic acid, vanillic acid, p -coumaric acid, caffeic acid, veratric acid and phenol were tested in the concentration range of 5–500 mg L −1 . Results showed that cinnamic acid is the most phytotoxic, with EC 50 of 60 mg L −1 , which is related with its hydrophobicity. Moreover, increasing -OH and -OCH 3 groups in these molecules seem to reduce phytotoxicity. Tests with a mixture of six phenolic compounds demonstrated there are neither synergistic nor additive effects. The phytotoxicity appears to be determined by the presence of the most lipophilic phenolic molecule. [ABSTRACT FROM AUTHOR]
Copyright of Chemosphere is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies