Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Simulation of soil carbon efflux from an arable soil using the ECOSSE model: Need for an improved model evaluation framework?

Tytuł:
Simulation of soil carbon efflux from an arable soil using the ECOSSE model: Need for an improved model evaluation framework?
Autorzy:
Flattery, Padraig
Fealy, Rowan
Fealy, Reamonn M.
Lanigan, Gary
Green, Stuart
Temat:
*Carbon in soils
*Climate change mitigation
*Land management
*Biogeochemistry
Soil respiration
Źródło:
Science of the Total Environment. May2018, Vol. 622, p1241-1249. 9p.
Czasopismo naukowe
Globally, it is estimated that ~ 1500 Pg C of organic carbon is stored in the top meter of terrestrial soils. This represents the largest terrestrial pool of carbon. Appropriate management of soils, to maintain or increase the soil carbon pool, represents a significant climate change mitigation opportunity. To achieve this, appropriate tools and models are required in order to more accurately estimate soil carbon fluxes with a view to informing and developing more effective land use management strategies. Central to this is the evaluation of models currently in use to estimate soil carbon emissions. In the present study, we evaluate the ECOSSE (Estimating Carbon in Organic Soils – Sequestration and Emissions) model which has its origins in both SUNDIAL and RothC and has been widely used globally to model soil CO 2 fluxes across different locations and land-use types on both organic and mineral soils. In contrast to previous studies, the model was found to poorly represent observed soil respiration at the study site, an arable cropland on mineral soil located in south-east Ireland. To isolate potential sources of error, the model was decomposed into its component rate equations or modifiers. This investigation highlighted a deficiency in the model simulated soil water, resulting in significant inhibition of the model simulated CO 2 flux relative to the observed data. When measured values of soil water at the site were employed, the model simulated soil respiration improved significantly (r 2 of 0.775 vs 0.154). This highlighted model deficiency remains to be evaluated at other sites; however, the research highlights the need for a more comprehensive evaluation of soil carbon models prior to their use in informing policy, particularly models which are employed at larger scales and for climate change projections. [ABSTRACT FROM AUTHOR]
Copyright of Science of the Total Environment is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies