Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Space-time PM2.5 mapping in the severe haze region of Jing-Jin-Ji (China) using a synthetic approach.

Tytuł:
Space-time PM2.5 mapping in the severe haze region of Jing-Jin-Ji (China) using a synthetic approach.
Autorzy:
He, Junyu
Christakos, George
Temat:
*Land use
Artificial neural networks
Spacetime
Regression analysis
Entropy
Źródło:
Environmental Pollution. Sep2018, Vol. 240, p319-329. 11p.
Czasopismo naukowe
Long- and short-term exposure to PM 2.5 is of great concern in China due to its adverse population health effects. Characteristic of the severity of the situation in China is that in the Jing-Jin-Ji region considered in this work a total of 2725 excess deaths have been attributed to short-term PM 2.5 exposure during the period January 10–31, 2013. Technically, the processing of large space-time PM 2.5 datasets and the mapping of the space-time distribution of PM 2.5 concentrations often constitute high-cost projects. To address this situation, we propose a synthetic modeling framework based on the integration of ( a ) the Bayesian maximum entropy method that assimilates auxiliary information from land-use regression and artificial neural network (ANN) model outputs based on PM 2.5 monitoring, satellite remote sensing data, land use and geographical records, with ( b ) a space-time projection technique that transforms the PM 2.5 concentration values from the original spatiotemporal domain onto a spatial domain that moves along the direction of the PM 2.5 velocity spread. An interesting methodological feature of the synthetic approach is that its components (methods or models) are complementary, i.e., one component can compensate for the occasional limitations of another component. Insight is gained in terms of a PM 2.5 case study covering the severe haze Jing-Jin-Ji region during October 1–31, 2015. The proposed synthetic approach explicitly accounted for physical space-time dependencies of the PM 2.5 distribution. Moreover, the assimilation of auxiliary information and the dimensionality reduction achieved by the synthetic approach produced rather impressive results: It generated PM 2.5 concentration maps with low estimation uncertainty (even at counties and villages far away from the monitoring stations, whereas during the haze periods the uncertainty reduction was over 50% compared to standard PM 2.5 mapping techniques); and it also proved to be computationally very efficient (the reduction in computational time was over 20% compared to standard mapping techniques). [ABSTRACT FROM AUTHOR]
Copyright of Environmental Pollution is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies