Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Land‐Surface Diurnal Effects on the Asymmetric Structures of a Postlandfall Tropical Storm.

Tytuł:
Land‐Surface Diurnal Effects on the Asymmetric Structures of a Postlandfall Tropical Storm.
Autorzy:
Zhang, Feimin
Pu, Zhaoxia
Wang, Chenghai
Temat:
*Tropical storms
*Natural disasters
Diurnal atmospheric pressure variations
Vortex motion
Computer simulation
Źródło:
Journal of Geophysical Research. Atmospheres. 1/1/2021, Vol. 126 Issue 1, p1-19. 19p.
Czasopismo naukowe
After a tropical storm makes landfall, its vortex interacts with the surrounding environment and the underlying surface. It is expected that diurnal variation over land will affect storm structures. However, this has not yet been explored in previous studies. In this paper, numerical simulation of postlandfall Tropical Storm Bill (2015) is conducted using a research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) model. Results indicate that during the storm's interaction with midlatitude westerlies over the Great Plains, the simulated storm with the SLAB land‐surface scheme is stronger, with faster eastward movement and attenuation, and more asymmetric structures than that with the NOAH land‐surface scheme. More symmetric structures correspond with a slower weakening and slower eastward movement of the storm over land. Further diagnoses suggest an obvious response of the storm's asymmetric structures to diurnal effects over land. Surface diabatic heating in the storm environment is important for the storm's symmetric structures and intensity over land. Specifically, during the transition from nighttime to daytime, the evident strengthening of convective instability, atmospheric baroclinicity, and the lateral advection of high θe air in the storm environment, associated with the rapid increase in surface diabatic heating, are conducive to the development of vertical vorticity and storm‐relative helicity, thus contributing to the maintenance of the storm's symmetric structures and intensity after landfall. Key Points: An evident response of the storm's asymmetric structures to diurnal effects over land are revealedSurface diabatic heating in the storm environment is important for the evolution of the storm's symmetric structures and intensity over landEffects of surface diabatic heating storm's symmetric structure and intensity over land are mainly manifested in storm's upshear quadrants [ABSTRACT FROM AUTHOR]
Copyright of Journal of Geophysical Research. Atmospheres is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies