Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Outwelling of total alkalinity and dissolved inorganic carbon from the Hooghly River to the adjacent coastal Bay of Bengal.

Tytuł:
Outwelling of total alkalinity and dissolved inorganic carbon from the Hooghly River to the adjacent coastal Bay of Bengal.
Autorzy:
Ghosh, Jayashree (AUTHOR)
Chakraborty, Kunal (AUTHOR)
Chanda, Abhra (AUTHOR)
Akhand, Anirban (AUTHOR)
Bhattacharya, Trishneeta (AUTHOR)
Das, Sourav (AUTHOR)
Das, Isha (AUTHOR)
Hazra, Sugata (AUTHOR)
Choudhury, S. B. (AUTHOR)
Wells, Mark (AUTHOR)
Temat:
*Ocean dynamics
*Atmospheric carbon dioxide
*Water temperature
*Inorganic compounds
Alkalinity
Flux flow
Źródło:
Environmental Monitoring & Assessment. Jul2021, Vol. 193 Issue 7, p1-14. 14p.
Czasopismo naukowe
The seasonal variability of the lateral flux of total alkalinity (TAlk) and dissolved inorganic carbon (DIC) of the tropical Hooghly estuary is analyzed in this work. In situ observations of water temperature, salinity, dissolved oxygen, TAlk, and pH were measured in four different stations of the Hooghly estuary. It was measured once every month during 2015–2016, and subsequently, DIC was estimated. A carbon budget was constructed to quantify carbon flows through the freshwater-marine continuum of the Hooghly estuary, and plausible impacts on the adjacent coastal ocean, the northern Bay of Bengal, were examined. The biogeochemical mass balance box model was used to compute the seasonal flow of carbon flux, and subsequently, the annual budgeting of lateral fluxes of TAlk and DIC to the adjacent coastal ocean was carried out. The net annual TAlk and DIC flux from the Hooghly estuary to the adjacent coastal ocean were 4.45 ± 1.90 × 1011 mol and 4.59 ± 1.70 × 1011 mol, respectively. The net annual DIC flux of the Hooghly estuary is about 30 to 60 times higher than surface area integrated air–water CO2 flux, which is an indication of promoting acidification in the adjacent coastal ocean. The present study indicates that the lateral DIC flux has increased substantially in the Hooghly estuary during the last two decades. The increase in inorganic carbon load in the Hooghly estuary due to the enhanced discharge of inorganic and organic matter load in the upper reaches of the estuary led to this increase in lateral DIC flux. The results strongly establish the need of having such regional studies for better understanding the estuarine carbon dynamics, and its role in controlling the adjacent coastal ocean dynamics. [ABSTRACT FROM AUTHOR]
Copyright of Environmental Monitoring & Assessment is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies