Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Significance of summer fog and overcast for drought stress and ecological functioning of coastal California endemic plant species.

Tytuł:
Significance of summer fog and overcast for drought stress and ecological functioning of coastal California endemic plant species.
Autorzy:
Fischer, Douglas T.
Still, Christopher J.
Williams, A. Park
Temat:
*Fog
*Droughts
*Endemic plants
*Evapotranspiration
*Water balance (Hydrology)
*Climatology
Pine
Mountain fog
Źródło:
Journal of Biogeography. Apr2009, Vol. 36 Issue 4, p783-799. 17p. 1 Diagram, 2 Charts, 6 Graphs, 1 Map.
Terminy geograficzne:
Santa Cruz Island (Calif.)
Channel Islands (Calif.)
California
Czasopismo naukowe
Aim Fog drip is a crucial water source for plants in many ecosystems, including a number of global biodiversity hotspots. In California, dozens of rare, drought-sensitive plant species are endemic to coastal areas where the dominant summer moisture source is fog. Low clouds that provide water to these semi-arid ecosystems through fog drip can also sharply reduce evaporative water losses by providing shade. We quantified the relative hydrological importance of cloud shading vs. fog drip. We then examined how both factors influence the range dynamics of an apparently fog-dependent plant species spanning a small-scale cloud gradient. Location The study area is on Santa Cruz Island off the coast of southern California. It is near the southern range limit of bishop pine ( Pinus muricata D. Don), a tree endemic to the coasts of California and Baja, Mexico. Methods We measured climate across a pine stand along a 7 km, coastal–inland elevation transect. Short-term (1–5 years) monitoring and remote sensing data revealed strong climatic gradients driven primarily by cloud cover. Long-term (102 years) effects of these gradients were estimated using a water balance model. Results We found that shade from persistent low clouds near the coast reduced annual drought stress by 22–40% compared with clearer conditions further inland. Fog drip at higher elevations provided sufficient extra water to reduce annual drought stress by 20–36%. Sites located at both high elevation and nearer the coast were subject to both effects. Together, these effects reduced average annual drought stress by 56% and dramatically reduced the frequency of severe drought over the last century. At lower elevation (without appreciable fog drip) and also near the inland edge of the stand (with less cloud shading) severe droughts episodically kill most pine recruits, thereby limiting the local range of this species. Main conclusions Persistent cloud shading can influence hydrology as much as fog drip in cloud-affected ecosystems. Understanding the patterns of both cloud shading and fog drip and their respective impacts on ecosystem water budgets is necessary to fully understand past species range shifts and to anticipate future climate change-induced range shifts in fog-dependent ecosystems. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Biogeography is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies