Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells.

Tytuł:
Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells.
Autorzy:
Cheng X; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Jaggar JH
Źródło:
American journal of physiology. Heart and circulatory physiology [Am J Physiol Heart Circ Physiol] 2006 Jun; Vol. 290 (6), pp. H2309-19. Date of Electronic Publication: 2006 Jan 20.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Bethesda, Md. : American Physiological Society,
MeSH Terms:
Calcium Signaling/*genetics
Calcium Signaling/*physiology
Caveolin 1/*genetics
Caveolin 1/*physiology
Muscle, Smooth, Vascular/*physiology
Myocytes, Smooth Muscle/*physiology
Animals ; Barium/pharmacology ; Cadmium/pharmacology ; Calcium Signaling/drug effects ; Electrophysiology ; Enzyme Inhibitors/pharmacology ; Fluorescent Dyes ; Fura-2 ; Indoles/pharmacology ; Mice ; Mice, Knockout ; Microscopy, Confocal ; Microscopy, Electron ; Muscle, Smooth, Vascular/ultrastructure ; Myocytes, Smooth Muscle/ultrastructure ; Nitroarginine/pharmacology ; Patch-Clamp Techniques ; Ryanodine Receptor Calcium Release Channel/physiology
References:
J Biol Chem. 2005 Mar 25;280(12):11656-64. (PMID: 15665381)
Ann Med. 2004;36(8):584-95. (PMID: 15768830)
Circ Res. 2005 Aug 19;97(4):354-62. (PMID: 16020754)
Am J Physiol Cell Physiol. 2000 Feb;278(2):C235-56. (PMID: 10666018)
Nature. 2000 Oct 19;407(6806):870-6. (PMID: 11057658)
Am J Physiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1226-35. (PMID: 11076813)
Circ Res. 2000 Nov 24;87(11):1034-9. (PMID: 11090549)
J Cell Sci. 2001 Apr;114(Pt 7):1397-408. (PMID: 11257005)
Nature. 2001 Mar 29;410(6828):592-6. (PMID: 11279498)
Nat Rev Mol Cell Biol. 2000 Oct;1(1):11-21. (PMID: 11413485)
Am J Physiol Cell Physiol. 2001 Aug;281(2):C439-48. (PMID: 11443043)
Am J Physiol Cell Physiol. 2001 Sep;281(3):C1029-37. (PMID: 11502581)
Science. 2001 Sep 28;293(5539):2449-52. (PMID: 11498544)
J Biol Chem. 2001 Oct 12;276(41):38121-38. (PMID: 11457855)
Am J Physiol Cell Physiol. 2001 Dec;281(6):C1769-75. (PMID: 11698234)
J Gen Physiol. 2002 Jul;120(1):15-27. (PMID: 12084772)
Pharmacol Rev. 2002 Sep;54(3):431-67. (PMID: 12223531)
J Physiol. 2002 Oct 1;544(Pt 1):71-84. (PMID: 12356881)
J Biol Chem. 2002 Oct 11;277(41):38988-97. (PMID: 12138167)
Mol Pharmacol. 2002 Nov;62(5):983-92. (PMID: 12391260)
Cardiovasc Res. 2003 Feb;57(2):358-69. (PMID: 12566108)
Biochem Biophys Res Commun. 2003 Apr 25;304(1):22-5. (PMID: 12705878)
Prog Biophys Mol Biol. 2003 Nov;83(3):171-91. (PMID: 12887979)
Traffic. 2003 Nov;4(11):717-23. (PMID: 14617355)
Cell. 2003 Nov 14;115(4):377-88. (PMID: 14622593)
Am J Physiol Heart Circ Physiol. 2004 Jan;286(1):H91-8. (PMID: 12969891)
Biochemistry. 2003 Dec 30;42(51):15124-31. (PMID: 14690422)
J Physiol. 2004 May 1;556(Pt 3):755-71. (PMID: 14766935)
J Membr Biol. 2004 Mar 15;198(2):95-101. (PMID: 15138749)
Circ Res. 2004 Jun 11;94(11):1408-17. (PMID: 15192036)
Biophys J. 2004 Sep;87(3):1836-47. (PMID: 15345562)
J Biol Chem. 1985 Mar 25;260(6):3440-50. (PMID: 3838314)
Science. 1995 May 19;268(5213):1042-5. (PMID: 7754383)
Science. 1995 May 19;268(5213):1045-9. (PMID: 7754384)
Science. 1995 Oct 27;270(5236):633-7. (PMID: 7570021)
Neuropharmacology. 1996;35(7):963-8. (PMID: 8938726)
J Physiol. 1998 Apr 1;508 ( Pt 1):199-209. (PMID: 9490839)
Am J Physiol. 1998 May;274(5 Pt 1):C1346-55. (PMID: 9612222)
Am J Physiol. 1998 Jun;274(6 Pt 1):C1755-61. (PMID: 9611142)
Acta Physiol Scand. 1998 Dec;164(4):577-87. (PMID: 9887980)
Eur J Pharmacol. 1999 May 7;372(1):103-7. (PMID: 10374720)
Am J Physiol Cell Physiol. 2005 Jul;289(1):C49-57. (PMID: 15703204)
Grant Information:
R01 HL067061 United States HL NHLBI NIH HHS; R01 HL077678 United States HL NHLBI NIH HHS
Substance Nomenclature:
0 (Caveolin 1)
0 (Enzyme Inhibitors)
0 (Fluorescent Dyes)
0 (Indoles)
0 (Ryanodine Receptor Calcium Release Channel)
00BH33GNGH (Cadmium)
2149-70-4 (Nitroarginine)
24GP945V5T (Barium)
3T9U9Z96L7 (paxilline)
TSN3DL106G (Fura-2)
Entry Date(s):
Date Created: 20060124 Date Completed: 20060622 Latest Revision: 20200930
Update Code:
20240104
PubMed Central ID:
PMC1698957
DOI:
10.1152/ajpheart.01226.2005
PMID:
16428350
Czasopismo naukowe
L-type, voltage-dependent calcium (Ca(2+)) channels, ryanodine-sensitive Ca(2+) release (RyR) channels, and large-conductance Ca(2+)-activated potassium (K(Ca)) channels comprise a functional unit that regulates smooth muscle contractility. Here, we investigated whether genetic ablation of caveolin-1 (cav-1), a caveolae protein, alters Ca(2+) spark to K(Ca) channel coupling and Ca(2+) spark regulation by voltage-dependent Ca(2+) channels in murine cerebral artery smooth muscle cells. Caveolae were abundant in the sarcolemma of control (cav-1(+/+)) cells but were not observed in cav-1-deficient (cav-1(-/-)) cells. Ca(2+) spark and transient K(Ca) current frequency were approximately twofold higher in cav-1(-/-) than in cav-1(+/+) cells. Although voltage-dependent Ca(2+) current density was similar in cav-1(+/+) and cav-1(-/-) cells, diltiazem and Cd(2+), voltage-dependent Ca(2+) channel blockers, reduced transient K(Ca) current frequency to approximately 55% of control in cav-1(+/+) cells but did not alter transient K(Ca) current frequency in cav-1(-/-) cells. Furthermore, although K(Ca) channel density was elevated in cav-1(-/-) cells, transient K(Ca) current amplitude was similar to that in cav-1(+/+) cells. Higher Ca(2+) spark frequency in cav-1(-/-) cells was not due to elevated intracellular Ca(2+) concentration, sarcoplasmic reticulum Ca(2+) load, or nitric oxide synthase activity. Similarly, Ca(2+) spark amplitude and spread, the percentage of Ca(2+) sparks that activated a transient K(Ca) current, the amplitude relationship between sparks and transient K(Ca) currents, and K(Ca) channel conductance and apparent Ca(2+) sensitivity were similar in cav-1(+/+) and cav-1(-/-) cells. In summary, cav-1 ablation elevates Ca(2+) spark and transient K(Ca) current frequency, attenuates the coupling relationship between voltage-dependent Ca(2+) channels and RyR channels that generate Ca(2+) sparks, and elevates K(Ca) channel density but does not alter transient K(Ca) current activation by Ca(2+) sparks. These findings indicate that cav-1 is required for physiological Ca(2+) spark and transient K(Ca) current regulation in cerebral artery smooth muscle cells.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies