Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver.

Tytuł:
Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver.
Autorzy:
Brunner AL; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.
Johnson DS
Kim SW
Valouev A
Reddy TE
Neff NF
Anton E
Medina C
Nguyen L
Chiao E
Oyolu CB
Schroth GP
Absher DM
Baker JC
Myers RM
Źródło:
Genome research [Genome Res] 2009 Jun; Vol. 19 (6), pp. 1044-56. Date of Electronic Publication: 2009 Mar 09.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Cold Spring Harbor, N.Y. : Cold Spring Harbor Laboratory Press, c1995-
MeSH Terms:
DNA Methylation*
Embryonic Stem Cells/*metabolism
Liver/*metabolism
Binding Sites ; Cell Differentiation/genetics ; Cell Line ; Cells, Cultured ; Chromosome Mapping ; Cluster Analysis ; CpG Islands/genetics ; Embryonic Stem Cells/cytology ; Gene Expression Profiling ; Genome, Human/genetics ; Histones/metabolism ; Humans ; Liver/cytology ; Liver/embryology ; Lysine/metabolism ; Methylation ; Promoter Regions, Genetic/genetics ; Sequence Analysis, DNA
References:
Genes Dev. 1992 May;6(5):705-14. (PMID: 1577268)
Genes Dev. 2005 May 15;19(10):1129-55. (PMID: 15905405)
Biochem Biophys Res Commun. 2007 Mar 2;354(1):66-71. (PMID: 17214963)
Genomics. 2007 Mar;89(3):326-37. (PMID: 17188838)
Genome Res. 2008 Dec;18(12):1969-78. (PMID: 18971312)
Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):252-7. (PMID: 18162535)
Biochem J. 2006 Feb 1;393(Pt 3):779-88. (PMID: 16248853)
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9912-7. (PMID: 16782807)
J Biol Chem. 1988 Sep 5;263(25):12645-52. (PMID: 2842337)
BMC Mol Biol. 2006 May 09;7:17. (PMID: 16684343)
J Hepatol. 2005;42 Suppl(1):S75-84. (PMID: 15777575)
Nat Genet. 1999 Jun;22(2):203-6. (PMID: 10369268)
Development. 1987 Mar;99(3):371-82. (PMID: 3653008)
Front Biosci. 2006 Jan 01;11:852-66. (PMID: 16146776)
Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3336-41. (PMID: 15728362)
Nat Genet. 2006 Feb;38(2):149-53. (PMID: 16444255)
Adv Pediatr. 2008;55:43-77. (PMID: 19048727)
Dev Biol. 2002 Jan 1;241(1):172-82. (PMID: 11784103)
Biochem J. 2006 Apr 1;395(1):203-9. (PMID: 16396632)
Annu Rev Genomics Hum Genet. 2008;9:197-216. (PMID: 18767963)
Am J Hum Genet. 2007 Dec;81(6):1304-15. (PMID: 17999367)
Cell Stem Cell. 2007 Sep 13;1(3):299-312. (PMID: 18371364)
J Cell Biol. 1977 Feb;72(2):441-55. (PMID: 833203)
Nat Genet. 2005 Aug;37(8):853-62. (PMID: 16007088)
Proc Natl Acad Sci U S A. 1984 Apr;81(8):2275-9. (PMID: 6585800)
Genomics. 2001 Aug;76(1-3):117-25. (PMID: 11560121)
Mol Cell Biol. 1996 Jul;16(7):3245-54. (PMID: 8668139)
Genome Res. 2006 Feb;16(2):157-63. (PMID: 16365381)
Cell Mol Life Sci. 2007 Oct;64(19-20):2522-4. (PMID: 17712527)
Nature. 2007 May 24;447(7143):425-32. (PMID: 17522676)
Science. 1975 Jan 24;187(4173):226-32. (PMID: 1111098)
Nature. 2008 Aug 7;454(7205):766-70. (PMID: 18600261)
Cell. 2006 Apr 21;125(2):301-13. (PMID: 16630818)
N Engl J Med. 2008 Mar 13;358(11):1148-59. (PMID: 18337604)
Nature. 2007 Aug 2;448(7153):553-60. (PMID: 17603471)
Nat Genet. 2003 Jun;34(2):187-92. (PMID: 12740577)
Biochem Biophys Res Commun. 2003 Nov 28;311(4):884-90. (PMID: 14623263)
J Biol Chem. 2003 Feb 7;278(6):4035-40. (PMID: 12427740)
BJOG. 2008 Jan;115(2):158-68. (PMID: 17970798)
Bioinformatics. 2004 Nov 22;20(17):3246-8. (PMID: 15180930)
Genes Cells. 1997 Aug;2(8):481-6. (PMID: 9348038)
Nature. 2008 Mar 6;452(7183):112-5. (PMID: 18322535)
PLoS Biol. 2008 Dec 2;6(12):2911-27. (PMID: 19053175)
Biol Reprod. 2001 Nov;65(5):1522-7. (PMID: 11673270)
Mol Cell Biol. 1984 May;4(5):898-907. (PMID: 6203029)
Cell. 2006 Apr 21;125(2):315-26. (PMID: 16630819)
Cell. 1999 Oct 29;99(3):247-57. (PMID: 10555141)
Hum Mol Genet. 2005 Apr 15;14 Spec No 1:R47-58. (PMID: 15809273)
Cancer Res. 2003 Mar 1;63(5):1114-21. (PMID: 12615730)
Stem Cells. 2008 Aug;26(8):2032-41. (PMID: 18535157)
J Biol Chem. 1994 Apr 1;269(13):10040-3. (PMID: 8144502)
Science. 2007 Feb 23;315(5815):1141-3. (PMID: 17322062)
Nat Biotechnol. 2005 Dec;23(12):1534-41. (PMID: 16258519)
Genome Res. 2009 Jun;19(6):959-66. (PMID: 19273618)
Blood Cells Mol Dis. 2006 Mar-Apr;36(2):269-78. (PMID: 16527500)
Nat Genet. 2007 Jan;39(1):61-9. (PMID: 17128275)
Mol Cell Biol. 2005 Sep;25(18):7929-39. (PMID: 16135786)
Nat Genet. 2009 Feb;41(2):240-5. (PMID: 19151718)
Cytogenet Genome Res. 2004;105(2-4):325-34. (PMID: 15237220)
Nat Protoc. 2006;1(5):2353-64. (PMID: 17406479)
Science. 2001 Aug 10;293(5532):1089-93. (PMID: 11498579)
Nature. 2008 Mar 6;452(7183):45-50. (PMID: 18322525)
Proc Natl Acad Sci U S A. 1988 Dec;85(23):9003-6. (PMID: 3194403)
Cell. 1999 Nov 24;99(5):451-4. (PMID: 10589672)
Nucleic Acids Res. 1979;6(6):2125-32. (PMID: 223125)
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8. (PMID: 9843981)
PLoS Biol. 2008 Jan;6(1):e22. (PMID: 18232738)
Nat Genet. 2003 Mar;33 Suppl:245-54. (PMID: 12610534)
Cell. 2006 Sep 22;126(6):1189-201. (PMID: 16949657)
Biochim Biophys Acta. 1984 May 15;782(1):1-9. (PMID: 6372865)
Cancer Res. 2006 Jun 15;66(12):6118-28. (PMID: 16778185)
Nat Genet. 1998 Oct;20(2):116-7. (PMID: 9771701)
Genome Res. 2006 Sep;16(9):1075-83. (PMID: 16899657)
Genome Res. 2005 Aug;15(8):1051-60. (PMID: 16024817)
Nat Genet. 2002 Jun;31(2):175-9. (PMID: 12021783)
J Mol Biol. 1987 Jul 20;196(2):261-82. (PMID: 3656447)
Nat Genet. 2007 Apr;39(4):457-66. (PMID: 17334365)
Nature. 2006 May 18;441(7091):349-53. (PMID: 16625203)
Genes Cells. 2002 Sep;7(9):961-9. (PMID: 12296826)
Nat Genet. 2005 Nov;37(11):1274-9. (PMID: 16244654)
Hum Mol Genet. 2000 Nov 1;9(18):2651-63. (PMID: 11063724)
Cell. 1990 Aug 10;62(3):503-14. (PMID: 1974172)
Nat Rev Genet. 2008 Jun;9(6):465-76. (PMID: 18463664)
Cell Stem Cell. 2008 Feb 7;2(2):160-9. (PMID: 18371437)
Nucleic Acids Res. 2006 Jan 20;34(2):528-42. (PMID: 16428248)
Cell Tissue Res. 2008 Jan;331(1):31-55. (PMID: 18060563)
Trends Genet. 1997 Aug;13(8):323-9. (PMID: 9260519)
PLoS Genet. 2007 Oct;3(10):2023-36. (PMID: 17967063)
PLoS Biol. 2004 Dec;2(12):e405. (PMID: 15550986)
Nat Genet. 2006 Dec;38(12):1378-85. (PMID: 17072317)
Biochem Biophys Res Commun. 2001 Dec 7;289(3):681-6. (PMID: 11726201)
Microbiol Rev. 1991 Sep;55(3):451-8. (PMID: 1943996)
Genes Dev. 2002 Jan 1;16(1):6-21. (PMID: 11782440)
Mech Ageing Dev. 2009 Apr;130(4):234-9. (PMID: 19150625)
Annu Rev Biochem. 2005;74:481-514. (PMID: 15952895)
EXS. 1993;64:523-68. (PMID: 8418958)
Grant Information:
U54 HG004576 United States HG NHGRI NIH HHS; 7U54HG004576 United States HG NHGRI NIH HHS
Substance Nomenclature:
0 (Histones)
K3Z4F929H6 (Lysine)
Entry Date(s):
Date Created: 20090311 Date Completed: 20090803 Latest Revision: 20211020
Update Code:
20240104
PubMed Central ID:
PMC2694474
DOI:
10.1101/gr.088773.108
PMID:
19273619
Czasopismo naukowe
To investigate the role of DNA methylation during human development, we developed Methyl-seq, a method that assays DNA methylation at more than 90,000 regions throughout the genome. Performing Methyl-seq on human embryonic stem cells (hESCs), their derivatives, and human tissues allowed us to identify several trends during hESC and in vivo liver differentiation. First, differentiation results in DNA methylation changes at a minimal number of assayed regions, both in vitro and in vivo (2%-11%). Second, in vitro hESC differentiation is characterized by both de novo methylation and demethylation, whereas in vivo fetal liver development is characterized predominantly by demethylation. Third, hESC differentiation is uniquely characterized by methylation changes specifically at H3K27me3-occupied regions, bivalent domains, and low density CpG promoters (LCPs), suggesting that these regions are more likely to be involved in transcriptional regulation during hESC differentiation. Although both H3K27me3-occupied domains and LCPs are also regions of high variability in DNA methylation state during human liver development, these regions become highly unmethylated, which is a distinct trend from that observed in hESCs. Taken together, our results indicate that hESC differentiation has a unique DNA methylation signature that may not be indicative of in vivo differentiation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies