Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.

Tytuł:
Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.
Autorzy:
Wankel SD; Department of Organismic and Evolutionary Biology, Harvard University School of Engineering and Applied Science, Harvard University, Cambridge, MA 01238, USA.
Adams MM
Johnston DT
Hansel CM
Joye SB
Girguis PR
Źródło:
Environmental microbiology [Environ Microbiol] 2012 Oct; Vol. 14 (10), pp. 2726-40. Date of Electronic Publication: 2012 Jul 25.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Oxford : Blackwell Science, 1999-
MeSH Terms:
Carbon Cycle*
Archaea/*metabolism
Carbon/*metabolism
Geologic Sediments/*microbiology
Methane/*metabolism
Sulfates/*metabolism
Anaerobiosis ; Archaea/classification ; Archaea/genetics ; Biodiversity ; Bioreactors ; Carbon/chemistry ; Ferric Compounds/chemistry ; Oxidation-Reduction ; Phylogeny ; Temperature
Substance Nomenclature:
0 (Ferric Compounds)
0 (Sulfates)
7440-44-0 (Carbon)
OP0UW79H66 (Methane)
Entry Date(s):
Date Created: 20120726 Date Completed: 20130501 Latest Revision: 20181202
Update Code:
20240104
DOI:
10.1111/j.1462-2920.2012.02825.x
PMID:
22827909
Czasopismo naukowe
The anaerobic oxidation of methane (AOM) is a globally significant sink that regulates methane flux from sediments into the oceans and atmosphere. Here we examine mesophilic to thermophilic AOM in hydrothermal sediments recovered from the Middle Valley vent field, on the Juan de Fuca Ridge. Using continuous-flow sediment bioreactors and batch incubations, we characterized (i) the degree to which AOM contributes to net dissolved inorganic carbon flux, (ii) AOM and sulfate reduction (SR) rates as a function of temperature and (iii) the distribution and density of known anaerobic methanotrophs (ANMEs). In sediment bioreactors, inorganic carbon stable isotope mass balances results indicated that AOM accounted for between 16% and 86% of the inorganic carbon produced, underscoring the role of AOM in governing inorganic carbon flux from these sediments. At 90°C, AOM occurred in the absence of SR, demonstrating a striking decoupling of AOM from SR. An abundance of Fe(III)-bearing minerals resembling mixed valent Fe oxides, such as green rust, suggests the potential for a coupling of AOM to Fe(III) reduction in these metalliferous sediments. While SR bacteria were only observed in cooler temperature sediments, ANMEs allied to ANME-1 ribotypes, including a putative ANME-1c group, were found across all temperature regimes and represented a substantial proportion of the archaeal community. In concert, these results extend and reshape our understanding of the nature of high temperature methane biogeochemistry, providing insight into the physiology and ecology of thermophilic anaerobic methanotrophy and suggesting that AOM may play a central role in regulating biological dissolved inorganic carbon fluxes to the deep ocean from the organic-poor, metalliferous sediments of the global mid-ocean ridge hydrothermal vent system.
(© 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies