Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes.

Tytuł:
Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes.
Autorzy:
Zhang T; Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
Zhao X
Wang W
Pan Y
Huang L
Liu X
Zong Y
Zhu L
Yang D
Fu B
Źródło:
PloS one [PLoS One] 2012; Vol. 7 (8), pp. e43274. Date of Electronic Publication: 2012 Aug 17.
Typ publikacji:
Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Cold Temperature*
Gene Expression Regulation, Plant/*genetics
Oryza/*genetics
Stress, Physiological/*genetics
Cluster Analysis ; Gene Expression Profiling ; Gene Expression Regulation, Plant/physiology ; Genotype ; Oligonucleotide Array Sequence Analysis ; Quantitative Trait Loci/genetics ; Real-Time Polymerase Chain Reaction ; Regulon/genetics ; Stress, Physiological/physiology ; Time Factors
References:
Theor Appl Genet. 2003 Apr;106(6):1084-90. (PMID: 12671757)
Plant Cell. 2002 Aug;14(8):1675-90. (PMID: 12172015)
Plant Physiol. 2005 Mar;137(3):961-8. (PMID: 15728337)
Curr Opin Plant Biol. 2007 Jun;10(3):310-6. (PMID: 17482504)
Mol Cell Proteomics. 2006 Mar;5(3):484-96. (PMID: 16316980)
Plant Physiol. 2004 Jul;135(3):1697-709. (PMID: 15247402)
BMC Plant Biol. 2010 Jan 25;10:16. (PMID: 20100339)
Theor Appl Genet. 2010 Mar;120(5):985-95. (PMID: 20012263)
Semin Cell Dev Biol. 2008 Dec;19(6):537-46. (PMID: 18707013)
Theor Appl Genet. 2010 Sep;121(5):895-905. (PMID: 20512559)
Trends Plant Sci. 2007 Oct;12(10):444-51. (PMID: 17855156)
Funct Integr Genomics. 2009 Feb;9(1):109-23. (PMID: 18594887)
Plant Cell Physiol. 2011 Feb;52(2):344-60. (PMID: 21169347)
Mol Genet Genomics. 2004 Mar;271(2):141-9. (PMID: 14727183)
Plant Physiol Biochem. 2010 May;48(5):292-300. (PMID: 20137959)
J Mol Evol. 2003 Jan;56(1):77-88. (PMID: 12569425)
Plant Physiol. 2010 May;153(1):145-58. (PMID: 20130099)
Mol Genet Genomics. 2010 Jul;284(1):45-54. (PMID: 20526617)
J Exp Bot. 2003 Nov;54(392):2579-85. (PMID: 12966040)
Plant Mol Biol. 2004 Mar;54(5):713-25. (PMID: 15356390)
Theor Appl Genet. 2007 Sep;115(5):593-600. (PMID: 17657471)
Plant Cell Rep. 2006 Oct;25(10):1111-21. (PMID: 16642382)
Biochim Biophys Acta. 2012 Feb;1819(2):86-96. (PMID: 21867785)
BMC Plant Biol. 2011 Nov 16;11:162. (PMID: 22088138)
Cell Mol Life Sci. 2008 Dec;65(24):3895-906. (PMID: 19011750)
Biochem Biophys Res Commun. 2003 Jan 10;300(2):555-62. (PMID: 12504119)
J Sci Food Agric. 2012 Jan 15;92(1):159-64. (PMID: 21815157)
Plant Physiol. 1992 Jul;99(3):1146-50. (PMID: 16668981)
Mol Genet Genomics. 2011 Aug;286(2):171-87. (PMID: 21792744)
Plant Mol Biol. 2012 Mar;78(4-5):503-14. (PMID: 22258187)
Mol Genet Genomics. 2010 Feb;283(2):185-96. (PMID: 20049613)
Plant Cell. 2004 May;16(5):1077-90. (PMID: 15100398)
Science. 1996 Dec 13;274(5294):1900-2. (PMID: 8943201)
Plant Physiol. 2002 Jun;129(2):469-85. (PMID: 12068094)
BMC Genomics. 2007 Jun 18;8:175. (PMID: 17577400)
Trends Plant Sci. 2001 Jan;6(1):36-42. (PMID: 11164376)
Nucleic Acids Res. 2000 Sep 1;28(17):3250-9. (PMID: 10954592)
Annu Rev Plant Biol. 2008;59:651-81. (PMID: 18444910)
Plant Physiol. 2009 May;150(1):244-56. (PMID: 19279197)
Theor Appl Genet. 2012 Mar;124(5):937-46. (PMID: 22113591)
Theor Appl Genet. 2006 Aug;113(3):467-75. (PMID: 16741739)
Plant J. 2003 Feb;33(4):751-63. (PMID: 12609047)
Plant Cell. 2004 May;16(5):1163-77. (PMID: 15084714)
Mol Genet Genomics. 2004 Jun;271(5):511-21. (PMID: 15069639)
Plant Physiol Biochem. 2008 Mar;46(3):292-301. (PMID: 18272379)
Physiol Plant. 2013 Jan;147(1):28-35. (PMID: 22435366)
Plant J. 2011 Sep;67(5):869-84. (PMID: 21575090)
J Plant Physiol. 2012 Apr 15;169(6):567-76. (PMID: 22304971)
J Biol Chem. 2006 Dec 8;281(49):37636-45. (PMID: 17015446)
BMC Genomics. 2011 Jul 31;12:384. (PMID: 21801454)
J Exp Bot. 2009;60(13):3891-908. (PMID: 19628571)
Plant Physiol Biochem. 2012 May;54:78-88. (PMID: 22391125)
J Exp Bot. 2010 Sep;61(14):3947-57. (PMID: 20826506)
Plant J. 2011 Dec;68(5):871-89. (PMID: 21838776)
Trends Plant Sci. 2004 May;9(5):236-43. (PMID: 15130549)
Plant Cell. 2003 Jan;15(1):63-78. (PMID: 12509522)
Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):343-348. (PMID: 24459736)
PLoS One. 2010 Jan 08;5(1):e8632. (PMID: 20072620)
Cell. 2010 Jan 8;140(1):136-47. (PMID: 20079334)
Plant Sci. 2011 May;180(5):726-32. (PMID: 21421424)
Genome Biol. 2001;2(2):REVIEWS3004. (PMID: 11182895)
Genome Biol. 2008;9(11):R165. (PMID: 19025653)
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W358-63. (PMID: 18487275)
BMC Plant Biol. 2009 Sep 22;9:120. (PMID: 19772648)
Plant Cell Physiol. 2008 Jun;49(6):865-79. (PMID: 18413358)
Molecular Sequence:
GEO GSE38023
Entry Date(s):
Date Created: 20120823 Date Completed: 20130501 Latest Revision: 20220311
Update Code:
20240104
PubMed Central ID:
PMC3422246
DOI:
10.1371/journal.pone.0043274
PMID:
22912843
Czasopismo naukowe
Rice is sensitive to chilling stress, especially at the seedling stage. To elucidate the molecular genetic mechanisms of chilling tolerance in rice, comprehensive gene expressions of two rice genotypes (chilling-tolerant LTH and chilling-sensitive IR29) with contrasting responses to chilling stress were comparatively analyzed. Results revealed a differential constitutive gene expression prior to stress and distinct global transcription reprogramming between the two rice genotypes under time-series chilling stress and subsequent recovery conditions. A set of genes with higher basal expression were identified in chilling-tolerant LTH compared with chilling-sensitive IR29, indicating their possible role in intrinsic tolerance to chilling stress. Under chilling stress, the major effect on gene expression was up-regulation in the chilling- tolerant genotype and strong repression in chilling-sensitive genotype. Early responses to chilling stress in both genotypes featured commonly up-regulated genes related to transcription regulation and signal transduction, while functional categories for late phase chilling regulated genes were diverse with a wide range of functional adaptations to continuous stress. Following the cessation of chilling treatments, there was quick and efficient reversion of gene expression in the chilling-tolerant genotype, while the chilling-sensitive genotype displayed considerably slower recovering capacity at the transcriptional level. In addition, the detection of differentially-regulated TF genes and enriched cis-elements demonstrated that multiple regulatory pathways, including CBF and MYBS3 regulons, were involved in chilling stress tolerance. A number of the chilling-regulated genes identified in this study were co-localized onto previously fine-mapped cold-tolerance-related QTLs, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for chilling tolerance in rice.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies