Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Contribution of bone marrow-derived hematopoietic stem/progenitor cells to the generation of donor-marker⁺ cardiomyocytes in vivo.

Tytuł:
Contribution of bone marrow-derived hematopoietic stem/progenitor cells to the generation of donor-marker⁺ cardiomyocytes in vivo.
Autorzy:
Fukata M; Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan. />Ishikawa F
Najima Y
Yamauchi T
Saito Y
Takenaka K
Miyawaki K
Shimazu H
Shimoda K
Kanemaru T
Nakamura K
Odashiro K
Nagafuji K
Harada M
Akashi K
Źródło:
PloS one [PLoS One] 2013 May 07; Vol. 8 (5), pp. e62506. Date of Electronic Publication: 2013 May 07 (Print Publication: 2013).
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Hematopoietic Stem Cell Transplantation*
Bone Marrow Cells/*cytology
Hematopoietic Stem Cells/*cytology
Myocytes, Cardiac/*cytology
Animals ; Biomarkers/metabolism ; Cell Differentiation ; Cell Fusion ; Cell Lineage ; Fetal Blood/cytology ; Humans ; Mice ; Mice, Inbred C57BL ; Myeloid Cells/cytology ; Myocytes, Cardiac/metabolism
References:
J Clin Invest. 2001 Jun;107(11):1395-402. (PMID: 11390421)
Circulation. 2006 Mar 14;113(10):1287-94. (PMID: 16520413)
Nature. 2004 Apr 8;428(6983):668-73. (PMID: 15034594)
Clin Exp Immunol. 2008 Nov;154(2):270-84. (PMID: 18785974)
Circ Res. 2012 Mar 2;110(5):701-15. (PMID: 22275487)
Blood. 2005 Sep 1;106(5):1565-73. (PMID: 15920010)
Nat Protoc. 2008;3(6):1101-8. (PMID: 18546601)
Blood. 2007 Aug 15;110(4):1362-9. (PMID: 17483296)
FASEB J. 2011 Mar;25(3):830-9. (PMID: 21059751)
N Engl J Med. 2006 Sep 21;355(12):1210-21. (PMID: 16990384)
Nat Cell Biol. 2004 Jun;6(6):532-9. (PMID: 15133469)
Nature. 2004 Apr 8;428(6983):664-8. (PMID: 15034593)
Nature. 1987 Jul 30-Aug 5;328(6129):429-32. (PMID: 2886914)
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13507-12. (PMID: 15353585)
Circulation. 2002 Jan 1;105(1):93-8. (PMID: 11772882)
Science. 2004 Jul 2;305(5680):90-3. (PMID: 15232107)
Nature. 2009 Jul 2;460(7251):113-7. (PMID: 19571884)
J Clin Invest. 2004 May;113(9):1266-70. (PMID: 15124017)
Nature. 2001 Apr 5;410(6829):701-5. (PMID: 11287958)
J Cell Mol Med. 2011 Jan;15(1):63-71. (PMID: 19912439)
Nat Med. 2004 Jul;10(7):744-8. (PMID: 15195088)
FASEB J. 2006 May;20(7):950-2. (PMID: 16585061)
Nat Med. 2007 Aug;13(8):970-4. (PMID: 17660827)
Nat Med. 2004 May;10(5):494-501. (PMID: 15107841)
Science. 2009 Apr 3;324(5923):98-102. (PMID: 19342590)
Mol Ther. 2006 Dec;14(6):840-50. (PMID: 16965940)
Nat Cell Biol. 2003 Nov;5(11):959-66. (PMID: 14562057)
Circulation. 2012 Jul 31;126(5):551-68. (PMID: 22730444)
Nat Med. 2003 Dec;9(12):1520-7. (PMID: 14625546)
Blood. 2004 Dec 1;104(12):3581-7. (PMID: 15297308)
Blood. 2013 Feb 21;121(8):1316-25. (PMID: 23293079)
Blood. 1987 Dec;70(6):1966-8. (PMID: 3315046)
Stem Cells. 2007 May;25(5):1213-21. (PMID: 17218403)
Circ Res. 2002 Mar 22;90(5):509-19. (PMID: 11909814)
Nature. 2002 Apr 4;416(6880):542-5. (PMID: 11932747)
Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):207-18. (PMID: 17467043)
J Clin Invest. 2005 Mar;115(3):572-83. (PMID: 15765139)
FASEB J. 2007 Aug;21(10):2592-601. (PMID: 17449722)
Immunobiology. 2007;212(9-10):785-93. (PMID: 18086379)
Nature. 2003 Oct 30;425(6961):968-73. (PMID: 14555960)
Basic Res Cardiol. 2011 Nov;106(6):1299-310. (PMID: 21901289)
Circ Res. 2005 Jan 7;96(1):127-37. (PMID: 15569828)
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13156-61. (PMID: 16920790)
N Engl J Med. 2002 Jan 3;346(1):5-15. (PMID: 11777997)
Stem Cells. 2008 Nov;26(11):2884-92. (PMID: 18687994)
Nature. 2005 Feb 17;433(7027):760-4. (PMID: 15716955)
Stem Cells Dev. 2010 Oct;19(10):1601-15. (PMID: 20109033)
Leukemia. 2007 Feb;21(2):297-303. (PMID: 17136117)
Circulation. 2002 Jul 2;106(1):31-5. (PMID: 12093766)
Circ Res. 2002 Apr 5;90(6):634-40. (PMID: 11934829)
Substance Nomenclature:
0 (Biomarkers)
Entry Date(s):
Date Created: 20130514 Date Completed: 20131209 Latest Revision: 20211021
Update Code:
20240104
PubMed Central ID:
PMC3647070
DOI:
10.1371/journal.pone.0062506
PMID:
23667482
Czasopismo naukowe
Background: Definite identification of the cell types and the mechanism relevant to cardiomyogenesis is essential for effective cardiac regenerative medicine. We aimed to identify the cell populations that can generate cardiomyocytes and to clarify whether generation of donor-marker(+) cardiomyocytes requires cell fusion between BM-derived cells and recipient cardiomyocytes.
Methodology/principal Findings: Purified BM stem/progenitor cells from green fluorescence protein (GFP) mice were transplanted into C57BL/6 mice or cyan fluorescence protein (CFP)-transgenic mice. Purified human hematopoietic stem cells (HSCs) from cord blood were transplanted into immune-compromised NOD/SCID/IL2rγ(null) mice. GFP(+) cells in the cardiac tissue were analyzed for the antigenecity of a cardiomyocyte by confocal microscopy following immunofluorescence staining. GFP(+) donor-derived cells, GFP(+)CFP(+) fused cells, and CFP(+) recipient-derived cells were distinguished by linear unmixing analysis. Hearts of xenogeneic recipients were evaluated for the expression of human cardiomyocyte genes by real-time quantitative polymerase chain reaction. In C57BL/6 recipients, Lin(-/low)CD45(+) hematopoietic cells generated greater number of GFP(+) cardiomyocytes than Lin(-/low)CD45(-) mesenchymal cells (37.0+/-23.9 vs 0.00+/-0.00 GFP(+) cardiomyocytes per a recipient, P = 0.0095). The number of transplanted purified HSCs (Lin(-/low)Sca-1(+) or Lin(-)Sca-1(+)c-Kit(+) or CD34(-)Lin(-)Sca-1(+)c-Kit(+)) showed correlation to the number of GFP(+) cardiomyocytes (P<0.05 in each cell fraction), and the incidence of GFP(+) cardiomyocytes per injected cell dose was greatest in CD34(-)Lin(-)Sca-1(+)c-Kit(+) recipients. Of the hematopoietic progenitors, total myeloid progenitors generated greater number of GFP(+) cardiomyocytes than common lymphoid progenitors (12.8+/-10.7 vs 0.67+/-1.00 GFP(+) cardiomyocytes per a recipient, P = 0.0021). In CFP recipients, all GFP(+) cardiomyocytes examined coexpressed CFP. Human troponin C and myosin heavy chain 6 transcripts were detected in the cardiac tissue of some of the xenogeneic recipients.
Conclusions/significance: Our results indicate that HSCs resulted in the generation of cardiomyocytes via myeloid intermediates by fusion-dependent mechanism. The use of myeloid derivatives as donor cells could potentially allow more effective cell-based therapy for cardiac repair.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies