Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Determining Occurrence Dynamics when False Positives Occur: Estimating the Range Dynamics of Wolves from Public Survey Data.

Tytuł :
Determining Occurrence Dynamics when False Positives Occur: Estimating the Range Dynamics of Wolves from Public Survey Data.
Autorzy :
Miller DA; United States Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland, United States of America ; Pennsylvania State University, Department of Ecosystem Science and Management, University Park, Pennsylvania, United States of America.
Nichols JD
Gude JA
Rich LN
Podruzny KM
Hines JE
Mitchell MS
Pokaż więcej
Źródło :
PloS one [PLoS One] 2013 Jun 19; Vol. 8 (6), pp. e65808. Date of Electronic Publication: 2013 Jun 19 (Print Publication: 2013).
Typ publikacji :
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język :
English
Imprint Name(s) :
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms :
Wolves/*classification
Wolves/*physiology
Animals ; Conservation of Natural Resources ; Databases, Factual ; Ecosystem ; Montana ; Population Density ; Population Dynamics ; Surveys and Questionnaires
References :
Ecology. 2010 Aug;91(8):2446-54. (PMID: 20836466)
Ecol Appl. 2011 Jun;21(4):1173-88. (PMID: 21774422)
Ecol Appl. 2012 Jul;22(5):1665-74. (PMID: 22908721)
Ecology. 2006 Apr;87(4):835-41. (PMID: 16676527)
J Anim Ecol. 2012 Nov;81(6):1288-1297. (PMID: 22702337)
Ecol Lett. 2010 Jun;13(6):659-74. (PMID: 20426794)
Biometrics. 2005 Jun;61(2):442-7. (PMID: 16011690)
Ecology. 2009 Jan;90(1):3-9. (PMID: 19294906)
Ecol Appl. 2009 Oct;19(7):1673-9. (PMID: 19831062)
Ecology. 2009 Mar;90(3):823-35. (PMID: 19341151)
Ecology. 2011 Jul;92(7):1422-8. (PMID: 21870616)
Biometrics. 2009 Sep;65(3):833-40. (PMID: 19173702)
Trends Ecol Evol. 2012 Feb;27(2):130-7. (PMID: 22192976)
Ecol Appl. 2010 Jun;20(4):1173-82. (PMID: 20597299)
Entry Date(s) :
Date Created: 20130711 Date Completed: 20171006 Latest Revision: 20211021
Update Code :
20211221
PubMed Central ID :
PMC3686827
DOI :
10.1371/journal.pone.0065808
PMID :
23840372
Czasopismo naukowe
Large-scale presence-absence monitoring programs have great promise for many conservation applications. Their value can be limited by potential incorrect inferences owing to observational errors, especially when data are collected by the public. To combat this, previous analytical methods have focused on addressing non-detection from public survey data. Misclassification errors have received less attention but are also likely to be a common component of public surveys, as well as many other data types. We derive estimators for dynamic occupancy parameters (extinction and colonization), focusing on the case where certainty can be assumed for a subset of detections. We demonstrate how to simultaneously account for non-detection (false negatives) and misclassification (false positives) when estimating occurrence parameters for gray wolves in northern Montana from 2007-2010. Our primary data source for the analysis was observations by deer and elk hunters, reported as part of the state's annual hunter survey. This data was supplemented with data from known locations of radio-collared wolves. We found that occupancy was relatively stable during the years of the study and wolves were largely restricted to the highest quality habitats in the study area. Transitions in the occupancy status of sites were rare, as occupied sites almost always remained occupied and unoccupied sites remained unoccupied. Failing to account for false positives led to over estimation of both the area inhabited by wolves and the frequency of turnover. The ability to properly account for both false negatives and false positives is an important step to improve inferences for conservation from large-scale public surveys. The approach we propose will improve our understanding of the status of wolf populations and is relevant to many other data types where false positives are a component of observations.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies