Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Leaf hydraulics II: vascularized tissues.

Tytuł :
Leaf hydraulics II: vascularized tissues.
Autorzy :
Rockwell FE; School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA. Electronic address: .
Holbrook NM
Stroock AD
Pokaż więcej
Źródło :
Journal of theoretical biology [J Theor Biol] 2014 Jan 07; Vol. 340, pp. 267-84. Date of Electronic Publication: 2013 Sep 04.
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Publication: Amsterdam : Elsevier
Original Publication: London.
MeSH Terms :
Plant Leaves/*physiology
Acer/physiology ; Ailanthus/physiology ; Elasticity ; Membrane Potentials ; Models, Biological ; Models, Theoretical ; Plant Physiological Phenomena ; Plant Stomata/physiology ; Plant Transpiration ; Quercus/physiology ; Species Specificity ; Tilia/physiology ; Trees/physiology ; Water/chemistry
Contributed Indexing :
Keywords: Leaf hydraulics; Plant water relations; Poroelasticity; Rehydration kinetics
Substance Nomenclature :
059QF0KO0R (Water)
Entry Date(s) :
Date Created: 20130910 Date Completed: 20140715 Latest Revision: 20131125
Update Code :
20210623
DOI :
10.1016/j.jtbi.2013.08.027
PMID :
24012489
Czasopismo naukowe
Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements.
(© 2013 Published by Elsevier Ltd. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies