Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Quantitative radiology: automated measurement of polyp volume in computed tomography colonography using Hessian matrix-based shape extraction and volume growing.

Tytuł:
Quantitative radiology: automated measurement of polyp volume in computed tomography colonography using Hessian matrix-based shape extraction and volume growing.
Autorzy:
Epstein ML; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Obara PR; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Chen Y; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Liu J; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Zarshenas A; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Makkinejad N; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Dachman AH; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Suzuki K; 1 Department of Radiology, The University of Chicago, Chicago, IL, USA ; 2 Department of Radiology, University of New Mexico, Albuquerque, NM, USA ; 3 Department of Radiology, Loyola University Medical Center, Maywood, IL, USA ; 4 Medical Imaging Research Center & Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA ; 5 School of Electronics Engineering and Computer Science, Beijing University, Beijing 100871, China.
Źródło:
Quantitative imaging in medicine and surgery [Quant Imaging Med Surg] 2015 Oct; Vol. 5 (5), pp. 673-84.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: [Hong Kong] : AME Pub.
References:
Med Phys. 2011 Apr;38(4):1888-902. (PMID: 21626922)
IEEE J Biomed Health Inform. 2014 Mar;18(2):585-93. (PMID: 24608058)
J Comput Assist Tomogr. 2002 Jul-Aug;26(4):493-504. (PMID: 12218808)
Radiology. 2004 Nov;233(2):328-37. (PMID: 15358854)
Quant Imaging Med Surg. 2012 Sep;2(3):163-76. (PMID: 23256078)
Radiology. 2002 Feb;222(2):337-45. (PMID: 11818597)
Acad Radiol. 2010 Jan;17 (1):39-47. (PMID: 19734062)
Lancet. 1986 Feb 8;1(8476):307-10. (PMID: 2868172)
N Engl J Med. 2003 Dec 4;349(23 ):2191-200. (PMID: 14657426)
Radiology. 2012 May;263(2):401-8. (PMID: 22361006)
AJR Am J Roentgenol. 2011 Oct;197(4):W706-12. (PMID: 21940543)
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):712-9. (PMID: 16685909)
N Engl J Med. 2008 Sep 18;359(12 ):1207-17. (PMID: 18799557)
Med Phys. 2006 Oct;33(10 ):3814-24. (PMID: 17089846)
IEEE Trans Med Imaging. 2010 Nov;29(11):1907-17. (PMID: 20570766)
AJR Am J Roentgenol. 2014 Jan;202(1):152-9. (PMID: 24370139)
Radiology. 2002 Feb;222(2):327-36. (PMID: 11818596)
CA Cancer J Clin. 2008 May-Jun;58(3):130-60. (PMID: 18322143)
Lancet. 2005 Jan 22-28;365(9456):305-11. (PMID: 15664225)
J Comput Assist Tomogr. 2001 Jul-Aug;25(4):629-38. (PMID: 11473197)
Radiology. 2005 Dec;237(3):819-33. (PMID: 16237143)
Radiology. 2007 Jan;242(1):120-8. (PMID: 17105850)
IEEE Trans Med Imaging. 2004 Nov;23 (11):1344-52. (PMID: 15554123)
IEEE Trans Med Imaging. 2001 Dec;20(12 ):1261-74. (PMID: 11811826)
Med Phys. 2010 Jan;37(1):12-21. (PMID: 20175461)
Gastroenterology. 2003 Sep;125(3):688-95. (PMID: 12949715)
Abdom Imaging. 2010 Oct;35(5):578-83. (PMID: 19633882)
Psychol Bull. 1979 Mar;86(2):420-8. (PMID: 18839484)
Radiology. 2001 Jun;219(3):685-92. (PMID: 11376255)
N Engl J Med. 2007 Oct 4;357(14 ):1403-12. (PMID: 17914041)
Cancer. 2007 Jun 1;109 (11):2213-21. (PMID: 17455218)
Med Phys. 2010 May;37(5):2159-66. (PMID: 20527550)
Med Phys. 2008 Feb;35(2):694-703. (PMID: 18383691)
N Engl J Med. 1999 Nov 11;341(20):1496-503. (PMID: 10559450)
Acad Radiol. 2008 Feb;15(2):231-9. (PMID: 18206622)
Grant Information:
R01 CA120549 United States CA NCI NIH HHS
Contributed Indexing:
Keywords: Quantitative CT colonography; colon cancer; computed tomography colonography (CTC); computer-aided diagnosis; polyp size; virtual colonoscopy
Entry Date(s):
Date Created: 20151219 Date Completed: 20151218 Latest Revision: 20220311
Update Code:
20240104
PubMed Central ID:
PMC4671965
DOI:
10.3978/j.issn.2223-4292.2015.10.06
PMID:
26682137
Czasopismo naukowe
Background: Current measurement of the single longest dimension of a polyp is subjective and has variations among radiologists. Our purpose was to develop a computerized measurement of polyp volume in computed tomography colonography (CTC).
Methods: We developed a 3D automated scheme for measuring polyp volume at CTC. Our scheme consisted of segmentation of colon wall to confine polyp segmentation to the colon wall, extraction of a highly polyp-like seed region based on the Hessian matrix, a 3D volume growing technique under the minimum surface expansion criterion for segmentation of polyps, and sub-voxel refinement and surface smoothing for obtaining a smooth polyp surface. Our database consisted of 30 polyp views (15 polyps) in CTC scans from 13 patients. Each patient was scanned in the supine and prone positions. Polyp sizes measured in optical colonoscopy (OC) ranged from 6-18 mm with a mean of 10 mm. A radiologist outlined polyps in each slice and calculated volumes by summation of volumes in each slice. The measurement study was repeated 3 times at least 1 week apart for minimizing a memory effect bias. We used the mean volume of the three studies as "gold standard".
Results: Our measurement scheme yielded a mean polyp volume of 0.38 cc (range, 0.15-1.24 cc), whereas a mean "gold standard" manual volume was 0.40 cc (range, 0.15-1.08 cc). The "gold-standard" manual and computer volumetric reached excellent agreement (intra-class correlation coefficient =0.80), with no statistically significant difference [P (F≤f) =0.42].
Conclusions: We developed an automated scheme for measuring polyp volume at CTC based on Hessian matrix-based shape extraction and volume growing. Polyp volumes obtained by our automated scheme agreed excellently with "gold standard" manual volumes. Our fully automated scheme can efficiently provide accurate polyp volumes for radiologists; thus, it would help radiologists improve the accuracy and efficiency of polyp volume measurements in CTC.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies