Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator.

Tytuł:
The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator.
Autorzy:
Tavares CD; From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Sharabi K; From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Dominy JE; From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Lee Y; From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Isasa M; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Orozco JM; From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Jedrychowski MP; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Kamenecka TM; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458.
Griffin PR; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458.
Gygi SP; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and.
Puigserver P; From the Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 and pere_.
Źródło:
The Journal of biological chemistry [J Biol Chem] 2016 May 13; Vol. 291 (20), pp. 10635-45. Date of Electronic Publication: 2016 Mar 28.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
MeSH Terms:
Gene Expression Regulation, Enzymologic/*drug effects
Gluconeogenesis/*drug effects
Histone Acetyltransferases/*biosynthesis
Liver/*metabolism
Methionine/*pharmacology
Transcription Factors/*metabolism
p300-CBP Transcription Factors/*biosynthesis
Acetylation/drug effects ; Animals ; Gluconeogenesis/genetics ; Hep G2 Cells ; Histone Acetyltransferases/genetics ; Humans ; Mice ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Transcription Factors/genetics ; p300-CBP Transcription Factors/genetics
References:
Arch Biochem Biophys. 1989 Sep;273(2):602-5. (PMID: 2505673)
Clin Sci (Lond). 1989 Jan;76(1):43-9. (PMID: 2920533)
EMBO J. 1992 Nov;11(11):4145-52. (PMID: 1396595)
Mol Cell Biochem. 1993 Dec 8;129(1):39-45. (PMID: 8177225)
Mol Cell Biol. 1998 Mar;18(3):1349-58. (PMID: 9488450)
Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8807-8. (PMID: 10430845)
Nature. 2005 Mar 3;434(7029):113-8. (PMID: 15744310)
Trends Neurosci. 2006 Feb;29(2):91-9. (PMID: 16406138)
J Nutr. 2006 Jun;136(6 Suppl):1716S-1721S. (PMID: 16702345)
Cell Metab. 2006 Jun;3(6):429-38. (PMID: 16753578)
Dev Dyn. 2008 Apr;237(4):928-40. (PMID: 18330926)
PLoS Comput Biol. 2008 May;4(5):e1000076. (PMID: 18451990)
Science. 2008 Jun 13;320(5882):1496-501. (PMID: 18497260)
J Pharmacol Exp Ther. 2008 Sep;326(3):809-17. (PMID: 18552130)
Am J Physiol Regul Integr Comp Physiol. 2010 Sep;299(3):R728-39. (PMID: 20538896)
Cell Metab. 2011 Jul 6;14(1):9-19. (PMID: 21723500)
Trends Endocrinol Metab. 2012 Feb;23(2):90-7. (PMID: 22047951)
Free Radic Biol Med. 2012 May 1;52(9):1716-26. (PMID: 22387178)
Biochem J. 2013 Jan 1;449(1):1-10. (PMID: 23216249)
PLoS One. 2012;7(12):e51357. (PMID: 23236485)
Mol Cell. 2012 Dec 28;48(6):900-13. (PMID: 23142079)
Nature. 2014 Jun 26;510(7506):547-51. (PMID: 24870244)
Epigenomics. 2014 Jun;6(3):329-39. (PMID: 25111486)
J Biol Chem. 2014 Sep 26;289(39):27034-45. (PMID: 25124041)
Diabetes. 2014 Nov;63(11):3721-33. (PMID: 24947368)
J Biol Chem. 2015 Nov 27;290(48):28997-9009. (PMID: 26468280)
Ann N Y Acad Sci. 2016 Jan;1363(1):116-24. (PMID: 26663138)
Trends Biochem Sci. 1999 Oct;24(10):398-403. (PMID: 10500305)
Am J Clin Nutr. 2000 Jul;72(1):22-9. (PMID: 10871556)
Mol Cell. 2000 Aug;6(2):269-79. (PMID: 10983975)
Nature. 2001 Sep 13;413(6852):131-8. (PMID: 11557972)
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4012-7. (PMID: 12651943)
Nature. 2003 May 29;423(6939):550-5. (PMID: 12754525)
Trends Biochem Sci. 2004 May;29(5):243-9. (PMID: 15130560)
Annu Rev Nutr. 2004;24:539-77. (PMID: 15189131)
Physiol Rev. 1970 Jul;50(3):428-558. (PMID: 4912906)
N Engl J Med. 1970 Mar 19;282(12):668-75. (PMID: 4915800)
J Agric Food Chem. 1974 Jan-Feb;22(1):2-9. (PMID: 4590578)
J Nutr. 1978 Jan;108(1):67-78. (PMID: 619045)
J Biol Chem. 1978 Nov 10;253(21):7844-50. (PMID: 100496)
Biochem Soc Trans. 1980 Oct;8(5):540-1. (PMID: 7004943)
Methods Enzymol. 1987;143:366-76. (PMID: 3309559)
Proc Natl Acad Sci U S A. 1989 Jun;86(12):4579-83. (PMID: 2660141)
Diabetes Metab Rev. 1987 Jan;3(1):307-32. (PMID: 3552525)
J Biol Chem. 1986 Feb 5;261(4):1582-7. (PMID: 3080429)
Hepatology. 1992 Jul;16(1):149-55. (PMID: 1377658)
Grant Information:
R24 DK080261 United States DK NIDDK NIH HHS; T32 GM007753 United States GM NIGMS NIH HHS
Contributed Indexing:
Keywords: acetylation; acetyltransferase; gluconeogenesis; glucose-6-phosphatase (G6pc); methionine; methionine transamination; methylthiopropionic acid (MTP); peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) (PPARGC1α); phosphoenolpyruvate carboxykinase (Pck1); transcription coactivator
Substance Nomenclature:
0 (PPARGC1A protein, human)
0 (Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha)
0 (Ppargc1a protein, mouse)
0 (Transcription Factors)
AE28F7PNPL (Methionine)
EC 2.3.1.48 (GCN5 histone acetyltransferase, mouse)
EC 2.3.1.48 (Histone Acetyltransferases)
EC 2.3.1.48 (p300-CBP Transcription Factors)
EC 2.3.1.48 (p300-CBP-associated factor)
Entry Date(s):
Date Created: 20160330 Date Completed: 20161110 Latest Revision: 20210205
Update Code:
20240104
PubMed Central ID:
PMC4865912
DOI:
10.1074/jbc.M115.706200
PMID:
27022023
Czasopismo naukowe
Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment.
(© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies