Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State.

Tytuł:
Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State.
Autorzy:
Dekkers BJ; Department of Molecular Plant Physiology, Utrecht UniversityUtrecht, Netherlands; Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands.
Pearce SP; Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; School of Mathematics, University of ManchesterManchester, UK.
van Bolderen-Veldkamp RP; Department of Molecular Plant Physiology, Utrecht UniversityUtrecht, Netherlands; Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands.
Holdsworth MJ; Division of Plant and Crop Science, School of Biosciences, University of Nottingham Leicestershire, UK.
Bentsink L; Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University Wageningen, Netherlands.
Źródło:
Frontiers in plant science [Front Plant Sci] 2016 Aug 30; Vol. 7, pp. 1323. Date of Electronic Publication: 2016 Aug 30 (Print Publication: 2016).
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Lausanne : Frontiers Research Foundation, 2010-
References:
Plant J. 2007 Jul;51(1):60-78. (PMID: 17461781)
J Exp Bot. 2010;61(2):597-607. (PMID: 19923197)
Arabidopsis Book. 2008;6:e0119. (PMID: 22303244)
Theor Appl Genet. 1982 Dec;61(4):385-93. (PMID: 24270501)
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9709-14. (PMID: 21593420)
Plant Physiol. 2015 Apr;167(4):1717-30. (PMID: 25667314)
Biol Rev Camb Philos Soc. 2015 Feb;90(1):31-59. (PMID: 24618017)
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19108-13. (PMID: 20956298)
Plant J. 2010 Feb;61(4):611-22. (PMID: 19947978)
Plant J. 2013 Jun;74(5):815-28. (PMID: 23464703)
Plant J. 2010 Apr 1;62(1):148-59. (PMID: 20042024)
Plant Cell. 2006 Aug;18(8):1887-99. (PMID: 16844907)
Plant J. 2007 May;50(3):452-65. (PMID: 17376157)
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18787-92. (PMID: 25516986)
Genetics. 2003 Jun;164(2):711-29. (PMID: 12807791)
Plant Physiol. 2006 Nov;142(3):839-54. (PMID: 16963520)
Plant Cell Physiol. 2009 Oct;50(10):1786-800. (PMID: 19713425)
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4264-9. (PMID: 20145108)
Plant Physiol. 2007 Mar;143(3):1173-88. (PMID: 17220360)
Proteomics. 2010 Feb;10(3):406-16. (PMID: 19943265)
Anal Biochem. 1994 Nov 15;223(1):7-12. (PMID: 7535022)
Plant Cell Physiol. 2012 Jan;53(1):1-4. (PMID: 22241887)
Plant Physiol. 2000 Feb;122(2):403-14. (PMID: 10677433)
Trends Plant Sci. 2008 Jan;13(1):7-13. (PMID: 18160329)
Curr Opin Plant Biol. 2005 Apr;8(2):183-7. (PMID: 15752999)
Plant Physiol. 2009 Jun;150(2):1006-21. (PMID: 19386806)
Planta. 2004 Jul;219(3):479-88. (PMID: 15060827)
Plant Cell Physiol. 2012 Jan;53(1):16-27. (PMID: 22147073)
J Plant Physiol. 2013 Apr 15;170(6):539-47. (PMID: 23261266)
Front Plant Sci. 2013 Apr 08;4:77. (PMID: 23579315)
PLoS Genet. 2015 Dec 17;11(12):e1005708. (PMID: 26681322)
Plant Cell. 1997 Jul;9(7):1055-1066. (PMID: 12237375)
Theor Appl Genet. 1980 Nov;58(6):257-63. (PMID: 24301503)
New Phytol. 2008;179(1):33-54. (PMID: 18422904)
Trends Plant Sci. 2016 Jun;21(6):498-505. (PMID: 26934952)
Plant Cell. 2015 Oct;27(10 ):2692-708. (PMID: 26410298)
New Phytol. 2006;171(3):501-23. (PMID: 16866955)
Front Plant Sci. 2014 May 28;5:233. (PMID: 24904627)
Plant Physiol. 2013 Sep;163(1):205-15. (PMID: 23858430)
Plant Cell Physiol. 2006 Jul;47(7):864-77. (PMID: 16705010)
Plant J. 2008 Jan;53(2):214-24. (PMID: 18028281)
J Exp Bot. 2011 Jun;62(10):3289-309. (PMID: 21430292)
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20236-41. (PMID: 22128331)
Plant Cell Physiol. 2012 Jan;53(1):5-15. (PMID: 21849396)
Annu Rev Plant Biol. 2012;63:507-33. (PMID: 22136565)
BMC Bioinformatics. 2008 Dec 22;9:552. (PMID: 19099609)
Plant Physiol. 2015 Jan;167(1):200-15. (PMID: 25429110)
J Exp Bot. 2014 Dec;65(22):6603-15. (PMID: 25240065)
Plant Cell. 2003 Jul;15(7):1591-604. (PMID: 12837949)
Plant J. 2012 Aug;71(4):575-86. (PMID: 22458548)
Plant Cell. 2009 Dec;21(12):3803-22. (PMID: 20023197)
Annu Rev Plant Biol. 2005;56:165-85. (PMID: 15862093)
Annu Rev Plant Biol. 2008;59:387-415. (PMID: 18257711)
Plant Cell Physiol. 2014 Sep;55(9):1521-33. (PMID: 24964910)
Nucleic Acids Res. 2005 Nov 10;33(20):e175. (PMID: 16284200)
Plant J. 2006 Jun;46(5):805-22. (PMID: 16709196)
Biostatistics. 2003 Apr;4(2):249-64. (PMID: 12925520)
Grant Information:
BB/G02488X/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
Contributed Indexing:
Keywords: Arabidopsis; after-ripening; dormancy; embryo; endosperm; seed; transcriptome
Entry Date(s):
Date Created: 20160915 Date Completed: 20160914 Latest Revision: 20240306
Update Code:
20240306
PubMed Central ID:
PMC5003841
DOI:
10.3389/fpls.2016.01323
PMID:
27625677
Czasopismo naukowe
Seed dormancy is a genetically controlled block preventing the germination of imbibed seeds in favorable conditions. It requires a period of dry storage (after-ripening) or certain environmental conditions to be overcome. Dormancy is an important seed trait, which is under selective pressure, to control the seasonal timing of seed germination. Dormant and non-dormant (after-ripened) seeds are characterized by large sets of differentially expressed genes. However, little information is available concerning the temporal and spatial transcriptional changes during early stages of rehydration in dormant and non-dormant seeds. We employed genome-wide transcriptome analysis on seeds of the model plant Arabidopsis thaliana to investigate transcriptional changes in dry seeds upon rehydration. We analyzed gene expression of dormant and after-ripened seeds of the Cvi accession over four time points and two seed compartments (the embryo and surrounding single cell layer endosperm), during the first 24 h after sowing. This work provides a global view of gene expression changes in dormant and non-dormant seeds with temporal and spatial detail, and these may be visualized via a web accessible tool (http://www.wageningenseedlab.nl/resources). A large proportion of transcripts change similarly in both dormant and non-dormant seeds upon rehydration, however, the first differences in transcript abundances become visible shortly after the initiation of imbibition, indicating that changes induced by after-ripening are detected and responded to rapidly upon rehydration. We identified several gene expression profiles which contribute to differential gene expression between dormant and non-dormant samples. Genes with enhanced expression in the endosperm of dormant seeds were overrepresented for stress-related Gene Ontology categories, suggesting a protective role for the endosperm against biotic and abiotic stress to support persistence of the dormant seed in its environment.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies