Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity.

Tytuł:
Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity.
Autorzy:
Jeacock L; The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom.
Baker N; The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom.
Wiedemar N; Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.; University of Basel, Basel, Switzerland.
Mäser P; Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.; University of Basel, Basel, Switzerland.
Horn D; The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom.
Źródło:
PLoS pathogens [PLoS Pathog] 2017 Mar 30; Vol. 13 (3), pp. e1006307. Date of Electronic Publication: 2017 Mar 30 (Print Publication: 2017).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, c2005-
MeSH Terms:
Aquaglyceroporins/*metabolism
Drug Resistance/*physiology
Trypanosomiasis, African/*metabolism
Animals ; Biological Transport/drug effects ; Disease Models, Animal ; Drug Resistance/drug effects ; Gene Knockout Techniques ; Glycerol/metabolism ; Melarsoprol/pharmacology ; Mice ; Mice, Inbred BALB C ; Trypanocidal Agents/pharmacology ; Trypanosoma brucei gambiense/metabolism
References:
Int J Parasitol Drugs Drug Resist. 2015 May 07;5(2):65-8. (PMID: 26042196)
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3416-21. (PMID: 22331916)
Cell Physiol Biochem. 2013;32(4):880-8. (PMID: 24217645)
Trans R Soc Trop Med Hyg. 1978;72(2):203-4. (PMID: 653794)
Tropenmed Parasitol. 1981 Sep;32(3):134-40. (PMID: 6285560)
Mol Biochem Parasitol. 2001 Sep 28;117(1):73-81. (PMID: 11551633)
J Membr Biol. 1996 Nov;154(2):131-41. (PMID: 8929287)
Eur J Biochem. 1998 Aug 15;256(1):245-50. (PMID: 9746370)
Science. 1999 Jul 9;285(5425):242-4. (PMID: 10398598)
Trends Parasitol. 2012 Aug;28(8):307-10. (PMID: 22704910)
Mol Biochem Parasitol. 2005 Dec;144(2):142-8. (PMID: 16182389)
Lancet. 2009 Jul 4;374(9683):56-64. (PMID: 19559476)
Lancet. 2010 Jan 9;375(9709):148-59. (PMID: 19833383)
J Biol Chem. 1997 Feb 7;272(6):3207-15. (PMID: 9013556)
Emerg Infect Dis. 2008 Jun;14(6):966-7. (PMID: 18507916)
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10996-1001. (PMID: 22711816)
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4580-5. (PMID: 23487766)
Science. 1976 Oct 8;194(4261):204-6. (PMID: 986688)
Biochim Biophys Acta Biomembr. 2017 May;1859(5):679-685. (PMID: 28087364)
J Antimicrob Chemother. 2014 Mar;69(3):651-63. (PMID: 24235095)
PLoS Pathog. 2016 Feb 01;12(2):e1005436. (PMID: 26828608)
Br J Clin Pharmacol. 1995 Mar;39(3):289-95. (PMID: 7619671)
Genome Res. 2011 Jun;21(6):915-24. (PMID: 21363968)
Exp Parasitol. 1986 Oct;62(2):283-91. (PMID: 3743718)
Mol Biochem Parasitol. 2008 Sep;161(1):76-9. (PMID: 18588918)
PLoS Negl Trop Dis. 2013 Oct 10;7(10):e2475. (PMID: 24130910)
Biochem J. 1996 Nov 1;319 ( Pt 3):691-7. (PMID: 8920968)
Biochim Biophys Acta. 2002 Jul 18;1587(2-3):234-9. (PMID: 12084465)
Mol Biochem Parasitol. 1986 Oct;21(1):55-63. (PMID: 3773935)
J Biol Chem. 2004 Sep 10;279(37):38673-82. (PMID: 15252016)
Trop Med Int Health. 2006 Feb;11(2):144-55. (PMID: 16451338)
J Biol Chem. 2004 Jul 23;279(30):31010-7. (PMID: 15138256)
J Eukaryot Microbiol. 2005 May-Jun;52(3):277-89. (PMID: 15927005)
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2211-6. (PMID: 17284593)
Antimicrob Agents Chemother. 1997 Sep;41(9):1922-5. (PMID: 9303385)
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17718-23. (PMID: 19008351)
Cell Physiol Biochem. 2011;27(3-4):411-20. (PMID: 21471730)
Nature. 1993 Jan 14;361(6408):173-6. (PMID: 8421523)
Trends Parasitol. 2013 Mar;29(3):110-8. (PMID: 23375541)
Mol Microbiol. 2007 Aug;65(4):1006-17. (PMID: 17640270)
Mol Biochem Parasitol. 2015 Jun;201(2):108-11. (PMID: 26222914)
Antimicrob Agents Chemother. 1993 May;37(5):1082-5. (PMID: 8517695)
PLoS Negl Trop Dis. 2014 Oct 02;8(10):e3212. (PMID: 25275572)
Acta Trop. 1997 Nov;68(2):139-47. (PMID: 9386789)
Trends Parasitol. 2017 Feb;33(2):80-82. (PMID: 27863903)
Parasitology. 2018 Feb;145(2):175-183. (PMID: 27894362)
Mol Microbiol. 2006 Sep;61(6):1598-608. (PMID: 16889642)
Parasitol Int. 2006 Mar;55(1):39-43. (PMID: 16288933)
Trans R Soc Trop Med Hyg. 2007 Jun;101(6):540-6. (PMID: 17275053)
Nature. 2012 Jan 25;482(7384):232-6. (PMID: 22278056)
J Biol Chem. 2004 Oct 8;279(41):42669-76. (PMID: 15294911)
Trends Parasitol. 2006 Oct;22(10):484-91. (PMID: 16920028)
Grant Information:
United Kingdom WT_ Wellcome Trust; MR/K000500/1 United Kingdom MRC_ Medical Research Council; 100320/Z/12/Z United Kingdom WT_ Wellcome Trust
Substance Nomenclature:
0 (Aquaglyceroporins)
0 (Trypanocidal Agents)
PDC6A3C0OX (Glycerol)
ZF3786Q2E8 (Melarsoprol)
Entry Date(s):
Date Created: 20170331 Date Completed: 20170803 Latest Revision: 20231112
Update Code:
20240105
PubMed Central ID:
PMC5388498
DOI:
10.1371/journal.ppat.1006307
PMID:
28358927
Czasopismo naukowe
Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies