Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Signal/noise ratio of orbital angular momentum modes for a partially coherent modified Bessel-correlated beam in a biological tissue.

Tytuł:
Signal/noise ratio of orbital angular momentum modes for a partially coherent modified Bessel-correlated beam in a biological tissue.
Autorzy:
Chen M
Yu L
Zhang Y
Źródło:
Journal of the Optical Society of America. A, Optics, image science, and vision [J Opt Soc Am A Opt Image Sci Vis] 2017 Nov 01; Vol. 34 (11), pp. 2046-2051.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Washington, DC : Optica Publishing Group
Original Publication: Washington, D.C. : Optical Society of America, c1993-
MeSH Terms:
Models, Statistical*
Models, Theoretical*
Optics and Photonics*
Scattering, Radiation*
Animals ; Humans ; Light ; Mathematics
Entry Date(s):
Date Created: 20171102 Date Completed: 20180420 Latest Revision: 20181023
Update Code:
20240104
DOI:
10.1364/JOSAA.34.002046
PMID:
29091656
Czasopismo naukowe
The random fluctuation of the refractive index is an important factor that affects the light transmission in a biological tissue. Here we have derived an expression of signal/noise ratio or equivalent intensity of the orbital angular momentum (OAM) mode for the partially coherent modified Bessel-correlated beam in a turbulent biological tissue. Effects of specific parameters of the biological tissue on it have been studied, such as the outer scale of the tissue index inhomogeneities, the fractal dimension of the particle size distribution, temperature fluctuation strength, and the cutoff correlation length. We argue that selecting a small quantum number of OAM modes is an effective means to improve signal transmission quality. We can adjust the propagation distance, the wavelength of the light source, and the diameter of the receiving aperture to obtain the optimum signal detection results. Also, nondiffracting vortex light can increase the communication channel capacity. Our findings will provide an important theoretical basis for the design and research of medical devices.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies