Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley.

Tytuł:
A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley.
Autorzy:
Delventhal R; Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany.
Rajaraman J; Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany.
Stefanato FL; Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH, UK.; Present address: Molecular microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
Rehman S; Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands.; Present address: Biodiversity and Integrated Gene Management Program (BIGM), International Center for Agriculture Research in the Dry Areas, Rabat, Morocco.
Aghnoum R; Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands.; Present address: Seed and Plant Improvement Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.
McGrann GRD; Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk, NR4 7UH, UK.
Bolger M; Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056, Aachen, Germany.
Usadel B; Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056, Aachen, Germany.
Hedley PE; The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK.
Boyd L; NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK.
Niks RE; Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands.
Schweizer P; Leibniz-Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany. .
Schaffrath U; Department of Plant Physiology, RWTH Aachen University, 52056, Aachen, Germany. .
Źródło:
BMC plant biology [BMC Plant Biol] 2017 Dec 04; Vol. 17 (1), pp. 232. Date of Electronic Publication: 2017 Dec 04.
Typ publikacji:
Comparative Study; Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2001-
MeSH Terms:
Disease Resistance/*genetics
Hordeum/*immunology
Plant Diseases/*immunology
Triticum/*immunology
Adaptation, Physiological ; Ascomycota ; Biological Evolution ; Disease Resistance/immunology ; Hordeum/genetics ; Hordeum/microbiology ; Magnaporthe ; Plant Diseases/genetics ; Transcriptome ; Triticum/genetics ; Triticum/microbiology
References:
Nature. 2012 Nov 29;491(7426):711-6. (PMID: 23075845)
New Phytol. 2009 Jun;182(4):817-28. (PMID: 19646067)
Curr Opin Plant Biol. 2008 Aug;11(4):404-11. (PMID: 18499508)
Nucleic Acids Res. 2015 Jan;43(Database issue):D1113-6. (PMID: 25361974)
Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203. (PMID: 19892828)
Proteomics. 2012 Mar;12(6):878-900. (PMID: 22539438)
Nat Genet. 2013 Sep;45(9):1092-6. (PMID: 23852167)
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1762-7. (PMID: 18230731)
Front Plant Sci. 2016 Dec 15;7:1836. (PMID: 28018377)
New Phytol. 2010 Jan;185(1):275-84. (PMID: 19814777)
New Phytol. 2008;180(4):899-910. (PMID: 19138233)
Proc Natl Acad Sci U S A. 1985 Oct;82(19):6551-5. (PMID: 16593612)
Mol Plant Pathol. 2016 Dec 27;:null. (PMID: 28026097)
Mol Plant Microbe Interact. 2003 Jul;16(7):626-33. (PMID: 12848428)
BMC Genomics. 2009 Jun 29;10:285. (PMID: 19558723)
Biotechniques. 2011 Mar;50(3):165-74. (PMID: 21486237)
PLoS One. 2016 Mar 18;11(3):e0150717. (PMID: 26991894)
Can J Microbiol. 1957 Aug;3(5):761-70. (PMID: 13460826)
Plant Cell Environ. 2014 May;37(5):1250-8. (PMID: 24237261)
Plant Cell. 2011 Apr;23(4):1249-63. (PMID: 21467582)
Plant Biotechnol J. 2013 Sep;11(7):847-54. (PMID: 23711079)
New Phytol. 2014 Dec;204(4):815-22. (PMID: 25168837)
Plant Cell. 2011 Jan;23(1):4-15. (PMID: 21278123)
Theor Appl Genet. 2013 Jun;126(6):1613-25. (PMID: 23467993)
Curr Opin Plant Biol. 2000 Aug;3(4):315-9. (PMID: 10873843)
Genetics. 2008 Apr;178(4):2327-39. (PMID: 18430953)
Nature. 2006 Nov 16;444(7117):323-9. (PMID: 17108957)
Plant Cell. 2004 Sep;16(9):2514-28. (PMID: 15319481)
Brief Bioinform. 2017 Jan 5;:null. (PMID: 28062412)
Trends Plant Sci. 2011 Mar;16(3):117-25. (PMID: 21317020)
Bioinformatics. 2002 Jan;18(1):207-8. (PMID: 11836235)
Nat Rev Genet. 2010 Aug;11(8):539-48. (PMID: 20585331)
Mol Plant Microbe Interact. 2006 Sep;19(9):1014-22. (PMID: 16941905)
Mol Plant Pathol. 2008 Sep;9(5):563-75. (PMID: 19018988)
Bioinformatics. 2005 Sep 15;21(18):3674-6. (PMID: 16081474)
Mol Plant Microbe Interact. 2017 Jan;30(1):5-15. (PMID: 27925500)
Plant Biotechnol J. 2016 May;14 (5):1261-8. (PMID: 26471973)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
Front Plant Sci. 2015 Jul 20;6:526. (PMID: 26257747)
Nat Rev Genet. 2013 May;14 (5):360-6. (PMID: 23552219)
Nucleic Acids Res. 2017 Jan 4;45(D1):D12-D17. (PMID: 27899561)
Planta. 2004 Nov;220(1):71-9. (PMID: 15243739)
J Plant Physiol. 2008 Jan;165(1):114-24. (PMID: 17905473)
New Phytol. 2016 Oct;212(2):421-33. (PMID: 27352228)
New Phytol. 2016 Oct;212(2):434-43. (PMID: 27364233)
New Phytol. 2014 Nov;204(3):650-60. (PMID: 25138067)
Plant J. 2004 Oct;40(2):276-90. (PMID: 15447653)
PLoS Pathog. 2006 Jan;2(1):e2. (PMID: 16424920)
Stud Mycol. 2014 Sep;79:85-120. (PMID: 25492987)
BMC Plant Biol. 2014 Jan 14;14:26. (PMID: 24423145)
Plant Cell. 1995 Jul;7(7):1085-1097. (PMID: 12242399)
Trends Plant Sci. 2004 Feb;9(2):97-104. (PMID: 15102376)
Nucleic Acids Res. 2001 Jan 1;29(1):159-64. (PMID: 11125077)
Mol Cell. 2014 Apr 24;54(2):263-72. (PMID: 24766890)
Science. 2013 Aug 16;341(6147):746-51. (PMID: 23950531)
Annu Rev Phytopathol. 2015;53:445-70. (PMID: 26047563)
BMC Bioinformatics. 2006 Dec 18;7:535. (PMID: 17176458)
Phytopathology. 1998 Aug;88(8):856-61. (PMID: 18944894)
Front Plant Sci. 2016 Jul 11;7:997. (PMID: 27462329)
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21896-901. (PMID: 21098265)
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402. (PMID: 9254694)
Nucleic Acids Res. 2003 Jan 1;31(1):68-71. (PMID: 12519949)
Theor Appl Genet. 2011 May;122(7):1375-83. (PMID: 21267709)
Plant Physiol. 2010 Apr;152(4):2053-66. (PMID: 20172964)
Grant Information:
BB/G024987/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; SCHW848/3-1 Deutsche Forschungsgemeinschaft; SCHA631/5-1 Deutsche Forschungsgemeinschaft; no. 855.50.015 Netherlands Organisation for Scientific Research
Contributed Indexing:
Keywords: Adapted isolate; Barley; Blumeria; Global transcriptome analysis; Magnaporthe; Non-adapted isolate; Nonhost resistance; Puccinia; Quantitative resistance; Wheat
Entry Date(s):
Date Created: 20171206 Date Completed: 20180522 Latest Revision: 20220408
Update Code:
20240105
PubMed Central ID:
PMC5715502
DOI:
10.1186/s12870-017-1178-0
PMID:
29202692
Czasopismo naukowe
Background: Nonhost resistance (NHR) protects plants against a vast number of non-adapted pathogens which implicates a potential exploitation as source for novel disease resistance strategies. Aiming at a fundamental understanding of NHR a global analysis of transcriptome reprogramming in the economically important Triticeae cereals wheat and barley, comparing host and nonhost interactions in three major fungal pathosystems responsible for powdery mildew (Blumeria graminis ff. ssp.), cereal blast (Magnaporthe sp.) and leaf rust (Puccinia sp.) diseases, was performed.
Results: In each pathosystem a significant transcriptome reprogramming by adapted- or non-adapted pathogen isolates was observed, with considerable overlap between Blumeria, Magnaporthe and Puccinia. Small subsets of these general pathogen-regulated genes were identified as differentially regulated between host and corresponding nonhost interactions, indicating a fine-tuning of the general pathogen response during the course of co-evolution. Additionally, the host- or nonhost-related responses were rather specific for each pair of adapted and non-adapted isolates, indicating that the nonhost resistance-related responses were to a great extent pathosystem-specific. This pathosystem-specific reprogramming may reflect different resistance mechanisms operating against non-adapted pathogens with different lifestyles, or equally, different co-option of the hosts by the adapted isolates to create an optimal environment for infection. To compare the transcriptional reprogramming between wheat and barley, putative orthologues were identified. Within the wheat and barley general pathogen-regulated genes, temporal expression profiles of orthologues looked similar, indicating conserved general responses in Triticeae against fungal attack. However, the comparison of orthologues differentially expressed between host and nonhost interactions revealed fewer commonalities between wheat and barley, but rather suggested different host or nonhost responses in the two cereal species.
Conclusions: Taken together, our results suggest independent co-evolutionary forces acting on host pathosystems mirrored by barley- or wheat-specific nonhost responses. As a result of evolutionary processes, at least for the pathosystems investigated, NHR appears to rely on rather specific plant responses.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies