Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

An error-tuned model for sensorimotor learning.

Tytuł :
An error-tuned model for sensorimotor learning.
Autorzy :
Ingram JN; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom.
Sadeghi M; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom.
Flanagan JR; Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
Wolpert DM; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom.
Pokaż więcej
Źródło :
PLoS computational biology [PLoS Comput Biol] 2017 Dec 18; Vol. 13 (12), pp. e1005883. Date of Electronic Publication: 2017 Dec 18 (Print Publication: 2017).
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
MeSH Terms :
Models, Psychological*
Learning/*physiology
Motor Skills/*physiology
Adaptation, Physiological ; Biomechanical Phenomena ; Computational Biology ; Humans ; Memory/physiology ; Models, Neurological ; Psychomotor Performance/physiology ; Sensorimotor Cortex/physiology ; Task Performance and Analysis ; Visual Perception/physiology
References :
J Neurosci. 2012 Sep 12;32(37):12756-68. (PMID: 22972999)
Nat Neurosci. 1999 Nov;2(11):1026-31. (PMID: 10526344)
J Neurosci. 2011 Nov 23;31(47):17058-68. (PMID: 22114275)
Curr Biol. 2010 Apr 13;20(7):618-23. (PMID: 20346672)
Front Comput Neurosci. 2015 Oct 09;9:126. (PMID: 26500533)
J Mot Behav. 1984 Jun;16(2):135-70. (PMID: 14713663)
Trends Cogn Sci. 1998 Sep 1;2(9):338-47. (PMID: 21227230)
Sci Rep. 2016 Mar 30;6:23331. (PMID: 27025168)
Exp Brain Res. 1991;83(3):477-82. (PMID: 2026190)
Exp Brain Res. 1987;66(1):141-54. (PMID: 3582528)
J Neurosci. 2010 Jan 27;30(4):1322-36. (PMID: 20107059)
Neural Netw. 1998 Oct;11(7-8):1317-29. (PMID: 12662752)
J Neurosci. 2009 Aug 19;29(33):10396-404. (PMID: 19692614)
Neural Comput. 2002 Jun;14(6):1233-60. (PMID: 12020444)
J Neurophysiol. 2005 May;93(5):2614-24. (PMID: 15647398)
Neuron. 2016 Nov 23;92 (4):773-779. (PMID: 27817979)
Nature. 1996 Jul 18;382(6588):252-5. (PMID: 8717039)
PLoS Comput Biol. 2011 Sep;7(9):e1002196. (PMID: 21980277)
J Robot Syst. 2005 Nov;22(11):691-710. (PMID: 17710121)
PLoS Biol. 2006 Jun;4(6):e179. (PMID: 16700627)
J Neurosci. 1982 Nov;2(11):1527-37. (PMID: 7143039)
Nature. 1998 Apr 2;392(6675):494-7. (PMID: 9548253)
Neural Comput. 2001 Oct;13(10):2201-20. (PMID: 11570996)
J Neurosci. 2004 Oct 6;24(40):8662-71. (PMID: 15470131)
J Neurosci Methods. 2009 Jul 30;181(2):199-211. (PMID: 19450621)
Nat Neurosci. 1999 Feb;2(2):162-7. (PMID: 10195201)
J Neurophysiol. 2005 Jan;93(1):609-13. (PMID: 15342720)
Nat Neurosci. 2003 Mar;6(3):300-8. (PMID: 12563264)
Nature. 2000 Oct 12;407(6805):742-7. (PMID: 11048720)
Curr Biol. 2008 May 20;18(10 ):763-768. (PMID: 18485709)
Exp Brain Res. 2002 Apr;143(4):520-4. (PMID: 11914799)
Curr Biol. 2015 Feb 2;25(3):397-401. (PMID: 25578907)
Curr Biol. 2013 Jun 17;23(12):1107-12. (PMID: 23727092)
J Neurosci. 2015 Jul 1;35(26):9568-79. (PMID: 26134640)
Neuron. 2009 Nov 25;64(4):575-89. (PMID: 19945398)
Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3843-6. (PMID: 8632977)
J Neurosci. 2003 Oct 8;23(27):9032-45. (PMID: 14534237)
Exp Brain Res. 2002 Sep;146(2):233-43. (PMID: 12195525)
Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7534-8. (PMID: 8052615)
Neural Comput. 2012 Apr;24(4):939-66. (PMID: 22295980)
Exp Brain Res. 2009 Apr;194(3):451-63. (PMID: 19205679)
J Neurophysiol. 2015 Jan 1;113(1):144-55. (PMID: 25274349)
J Neurosci. 2012 Oct 24;32(43):15086-92. (PMID: 23100429)
Neuron. 2016 Jun 1;90(5):1114-26. (PMID: 27181058)
Nat Neurosci. 2006 Nov;9(11):1364-6. (PMID: 17028583)
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5461-6. (PMID: 12704240)
Nat Commun. 2015 Jan 30;6:5925. (PMID: 25635628)
J Neurosci. 2014 Oct 1;34(40):13411-21. (PMID: 25274819)
J Neurophysiol. 2000 Aug;84(2):853-62. (PMID: 10938312)
J Neurophysiol. 2008 Oct;100(4):1949-66. (PMID: 18650308)
Grant Information :
United Kingdom WT_ Wellcome Trust
Entry Date(s) :
Date Created: 20171219 Date Completed: 20180123 Latest Revision: 20210109
Update Code :
20210210
PubMed Central ID :
PMC5749863
DOI :
10.1371/journal.pcbi.1005883
PMID :
29253869
Czasopismo naukowe
Current models of sensorimotor control posit that motor commands are generated by combining multiple modules which may consist of internal models, motor primitives or motor synergies. The mechanisms which select modules based on task requirements and modify their output during learning are therefore critical to our understanding of sensorimotor control. Here we develop a novel modular architecture for multi-dimensional tasks in which a set of fixed primitives are each able to compensate for errors in a single direction in the task space. The contribution of the primitives to the motor output is determined by both top-down contextual information and bottom-up error information. We implement this model for a task in which subjects learn to manipulate a dynamic object whose orientation can vary. In the model, visual information regarding the context (the orientation of the object) allows the appropriate primitives to be engaged. This top-down module selection is implemented by a Gaussian function tuned for the visual orientation of the object. Second, each module's contribution adapts across trials in proportion to its ability to decrease the current kinematic error. Specifically, adaptation is implemented by cosine tuning of primitives to the current direction of the error, which we show to be theoretically optimal for reducing error. This error-tuned model makes two novel predictions. First, interference should occur between alternating dynamics only when the kinematic errors associated with each oppose one another. In contrast, dynamics which lead to orthogonal errors should not interfere. Second, kinematic errors alone should be sufficient to engage the appropriate modules, even in the absence of contextual information normally provided by vision. We confirm both these predictions experimentally and show that the model can also account for data from previous experiments. Our results suggest that two interacting processes account for module selection during sensorimotor control and learning.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies