Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Genomic Prediction Accuracy for Resistance Against Piscirickettsia salmonis in Farmed Rainbow Trout.

Tytuł:
Genomic Prediction Accuracy for Resistance Against Piscirickettsia salmonis in Farmed Rainbow Trout.
Autorzy:
Yoshida GM; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile.; Animal Science Department, School of Agricultural and Veterinarian Sciences, São Paulo State University, Campus of Jaboticabal, 14884-900, Brazil.
Bangera R; Akvaforsk Genetics, 6600 Sunndalsora, Norway.
Carvalheiro R; Animal Science Department, School of Agricultural and Veterinarian Sciences, São Paulo State University, Campus of Jaboticabal, 14884-900, Brazil.
Correa K; Aquainnovo, Puerto Montt, Chile.
Figueroa R; Aquainnovo, Puerto Montt, Chile.
Lhorente JP; Aquainnovo, Puerto Montt, Chile.
Yáñez JM; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile .; Aquainnovo, Puerto Montt, Chile.; Núcleo Milenio de Salmónidos Invasores, Concepción, Chile.
Źródło:
G3 (Bethesda, Md.) [G3 (Bethesda)] 2018 Feb 02; Vol. 8 (2), pp. 719-726. Date of Electronic Publication: 2018 Feb 02.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2021- : [Oxford] : Oxford University Press
Original Publication: Bethesda, MD : Genetics Society of America, 2011-
MeSH Terms:
Disease Resistance/*genetics
Fish Diseases/*genetics
Genomics/*methods
Oncorhynchus mykiss/*genetics
Piscirickettsiaceae Infections/*genetics
Animals ; Bayes Theorem ; Fish Diseases/microbiology ; Genome-Wide Association Study ; Genotype ; Oncorhynchus mykiss/microbiology ; Phenotype ; Piscirickettsia/physiology ; Piscirickettsiaceae Infections/microbiology ; Polymorphism, Single Nucleotide
References:
Heredity (Edinb). 2010 Sep;105(3):318-27. (PMID: 19935825)
Genet Res (Camb). 2009 Feb;91(1):47-60. (PMID: 19220931)
Anim Genet. 2017 Dec;48(6):698-703. (PMID: 29044715)
J Dairy Sci. 2008 Nov;91(11):4414-23. (PMID: 18946147)
PLoS Genet. 2010 Sep 23;6(9):e1001139. (PMID: 20927186)
Anim Genet. 2010 Oct;41(5):531-6. (PMID: 20331597)
BMC Genomics. 2015 Oct 24;16:854. (PMID: 26499328)
J Anim Sci Biotechnol. 2016 Feb 11;7:7. (PMID: 26870325)
Genet Sel Evol. 2017 Feb 1;49(1):17. (PMID: 28148220)
J Dairy Sci. 2013 Jan;96(1):575-91. (PMID: 23127905)
Genetics. 2008 Sep;180(1):611-8. (PMID: 18757934)
Genetics. 2008 Feb;178(2):1109-15. (PMID: 18245341)
Genet Sel Evol. 2017 Mar 7;49(1):33. (PMID: 28270100)
BMC Genomics. 2017 Jun 27;18(1):484. (PMID: 28655320)
J Anim Sci. 2013 Aug;91(8):3583-92. (PMID: 23736050)
J Anim Sci. 2012 Oct;90(10 ):3398-409. (PMID: 23038745)
J Fish Dis. 2014 Mar;37(3):163-88. (PMID: 24279295)
Genet Sel Evol. 2009 Jun 11;41:35. (PMID: 19519896)
PLoS Genet. 2013;9(7):e1003608. (PMID: 23874214)
Genetics. 2007 Dec;177(4):2389-97. (PMID: 18073436)
Genet Sel Evol. 2016 Jun 29;48(1):47. (PMID: 27357694)
Genet Sel Evol. 2017 Jan 31;49(1):15. (PMID: 28143593)
Genetica. 2009 Jun;136(2):245-57. (PMID: 18704696)
PLoS One. 2014 Apr 15;9(4):e95397. (PMID: 24736323)
J Dairy Sci. 2010 Feb;93(2):743-52. (PMID: 20105546)
Fish Physiol Biochem. 2016 Apr;42(2):509-16. (PMID: 26537800)
J Dairy Sci. 2014 Mar;97(3):1742-52. (PMID: 24472123)
Genetics. 2015 Aug;200(4):1313-26. (PMID: 26041276)
Dev Biol (Basel). 2008;132:199-204. (PMID: 18817302)
BMC Genomics. 2014 Feb 06;15:90. (PMID: 24524230)
Mol Ecol Resour. 2015 May;15(3):662-72. (PMID: 25294387)
Genet Sel Evol. 2014 Feb 27;46:17. (PMID: 24575732)
PLoS One. 2014 Jul 15;9(7):e101544. (PMID: 25025158)
Mol Ecol Resour. 2016 Jul;16(4):1002-11. (PMID: 26849107)
Front Genet. 2014 Nov 21;5:402. (PMID: 25484890)
Animal. 2012 Oct;6(10):1565-71. (PMID: 22717310)
Genetics. 2009 May;182(1):343-53. (PMID: 19299339)
J Appl Genet. 2016 Nov;57(4):495-504. (PMID: 27001052)
Genetics. 2001 Apr;157(4):1819-29. (PMID: 11290733)
PLoS One. 2008;3(10):e3395. (PMID: 18852893)
BMC Genomics. 2015 Nov 18;16:969. (PMID: 26582102)
Methods Mol Biol. 2013;1019:237-74. (PMID: 23756894)
Vaccine. 2001 Mar 21;19(17-19):2337-44. (PMID: 11257358)
J Anim Sci. 2011 Jan;89(1):23-8. (PMID: 20889689)
Theor Appl Genet. 2007 Sep;115(5):665-74. (PMID: 17673971)
Front Genet. 2016 May 27;7:96. (PMID: 27303436)
BMC Bioinformatics. 2011 May 23;12:186. (PMID: 21605355)
Front Genet. 2014 Nov 26;5:415. (PMID: 25505486)
BMC Genomics. 2017 Jan 31;18(1):121. (PMID: 28143402)
J Fish Dis. 2003 May;26(5):251-62. (PMID: 12962234)
Vaccine. 2011 Mar 9;29(12):2336-40. (PMID: 21219985)
G3 (Bethesda). 2017 Apr 3;7(4):1377-1383. (PMID: 28250015)
Sci Rep. 2015 May 19;5:10312. (PMID: 25988841)
Contributed Indexing:
Keywords: GenPred; Oncorhynchus mykiss; Shared Data Resources; disease resistance; genomic selection; reliability
Entry Date(s):
Date Created: 20171220 Date Completed: 20181011 Latest Revision: 20181113
Update Code:
20240104
PubMed Central ID:
PMC5919750
DOI:
10.1534/g3.117.300499
PMID:
29255117
Czasopismo naukowe
Salmonid rickettsial syndrome (SRS), caused by the intracellular bacterium Piscirickettsia salmonis , is one of the main diseases affecting rainbow trout ( Oncorhynchus mykiss ) farming. To accelerate genetic progress, genomic selection methods can be used as an effective approach to control the disease. The aims of this study were: (i) to compare the accuracy of estimated breeding values using pedigree-based best linear unbiased prediction (PBLUP) with genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), Bayes C, and Bayesian Lasso (LASSO); and (ii) to test the accuracy of genomic prediction and PBLUP using different marker densities (0.5, 3, 10, 20, and 27 K) for resistance against P. salmonis in rainbow trout. Phenotypes were recorded as number of days to death (DD) and binary survival (BS) from 2416 fish challenged with P. salmonis A total of 1934 fish were genotyped using a 57 K single-nucleotide polymorphism (SNP) array. All genomic prediction methods achieved higher accuracies than PBLUP. The relative increase in accuracy for different genomic models ranged from 28 to 41% for both DD and BS at 27 K SNP. Between different genomic models, the highest relative increase in accuracy was obtained with Bayes C (∼40%), where 3 K SNP was enough to achieve a similar accuracy to that of the 27 K SNP for both traits. For resistance against P. salmonis in rainbow trout, we showed that genomic predictions using GBLUP, ssGBLUP, Bayes C, and LASSO can increase accuracy compared with PBLUP. Moreover, it is possible to use relatively low-density SNP panels for genomic prediction without compromising accuracy predictions for resistance against P. salmonis in rainbow trout.
(Copyright © 2018 Yoshida et al.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies