Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Local interactions and self-organized spatial patterns stabilize microbial cross-feeding against cheaters.

Tytuł:
Local interactions and self-organized spatial patterns stabilize microbial cross-feeding against cheaters.
Autorzy:
Stump SM; W. K. Kellogg Biological StationBehavior, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA .; School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA.
Johnson EC; W. K. Kellogg Biological StationBehavior, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.; Population Biology Graduate Group, University of California, Davis 2320 Storer Hall, One Shields Avenue, Davis, CA 95616, USA.
Klausmeier CA; W. K. Kellogg Biological StationBehavior, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.; Department of Plant BiologyBehavior, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.; Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.
Źródło:
Journal of the Royal Society, Interface [J R Soc Interface] 2018 Mar; Vol. 15 (140).
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : Royal Society, [2004]-
MeSH Terms:
Biological Evolution*
Models, Biological*
Microbial Consortia/*physiology
References:
Ecol Lett. 2011 Sep;14(9):852-62. (PMID: 21749598)
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17300-4. (PMID: 17959781)
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18188-93. (PMID: 19011107)
J Evol Biol. 2014 Sep;27(9):1869-77. (PMID: 24962623)
Trends Genet. 2015 Aug;31(8):475-82. (PMID: 26078099)
Elife. 2013 Nov 12;2:e00960. (PMID: 24220506)
Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1877-82. (PMID: 17267602)
Nat Rev Microbiol. 2016 Sep;14(9):589-600. (PMID: 27452230)
Front Microbiol. 2015 Feb 26;6:143. (PMID: 25767468)
Evolution. 2010 Sep;64(9):2682-7. (PMID: 20394658)
Nat Rev Microbiol. 2006 Aug;4(8):597-607. (PMID: 16845430)
Proc Biol Sci. 2006 Sep 7;273(1598):2233-9. (PMID: 16901844)
Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2149-56. (PMID: 24778240)
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20059-64. (PMID: 23169633)
Environ Sci Technol. 2009 Mar 15;43(6):2105-11. (PMID: 19368221)
Mol Biosyst. 2012 Oct;8(10):2470-83. (PMID: 22722235)
Theor Popul Biol. 2015 Dec;106:60-70. (PMID: 26525355)
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9938-43. (PMID: 26221022)
Am Nat. 2014 Jun;183(6):762-70. (PMID: 24823820)
J Theor Biol. 2012 Nov 7;312:1-12. (PMID: 22842011)
PLoS One. 2011 Feb 25;6(2):e17019. (PMID: 21364881)
J R Soc Interface. 2014 Jul 6;11(96):. (PMID: 24829281)
Trends Biotechnol. 2008 Sep;26(9):483-9. (PMID: 18675483)
Genes Dev. 2010 Dec 1;24(23):2603-14. (PMID: 21123647)
Science. 2006 Dec 8;314(5805):1560-3. (PMID: 17158317)
PLoS Comput Biol. 2010 Mar 19;6(3):e1000716. (PMID: 20333237)
Trends Microbiol. 2004 Feb;12(2):72-8. (PMID: 15036323)
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3695-700. (PMID: 11904428)
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11509-14. (PMID: 25053814)
Ecol Lett. 2011 Dec;14(12):1300-12. (PMID: 22011186)
Appl Environ Microbiol. 2015 Nov;81(22):7767-81. (PMID: 26319874)
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17941-6. (PMID: 25453102)
J R Soc Interface. 2018 Mar;15(140):. (PMID: 29563243)
Evolution. 2014 Oct;68(10):2960-71. (PMID: 24989794)
J Theor Biol. 2004 Feb 21;226(4):421-8. (PMID: 14759648)
ISME J. 2011 Jul;5(7):1133-42. (PMID: 21326336)
Contributed Indexing:
Keywords: cross-feeding; multilevel selection; neighbour uncertainty; pattern formation; stochastic spatial model; syntrophy
Entry Date(s):
Date Created: 20180323 Date Completed: 20190626 Latest Revision: 20210109
Update Code:
20240104
PubMed Central ID:
PMC5908524
DOI:
10.1098/rsif.2017.0822
PMID:
29563243
Czasopismo naukowe
Mutualisms are ubiquitous, but models predict they should be susceptible to cheating. Resolving this paradox has become relevant to synthetic ecology: cooperative cross-feeding, a nutrient-exchange mutualism, has been proposed to stabilize microbial consortia. Previous attempts to understand how cross-feeders remain robust to non-producing cheaters have relied on complex behaviour (e.g. cheater punishment) or group selection. Using a stochastic spatial model, we demonstrate two novel mechanisms that can allow cross-feeders to outcompete cheaters, rather than just escape from them. Both mechanisms work through the spatial segregation of the resources, which prevents individual cheaters from acquiring the resources they need to reproduce. First, if microbe dispersal is low but resources are shared widely, then the cross-feeders self-organize into stable spatial patterns. Here the cross-feeders can build up where the resource they need is abundant, and send their resource to where their partner is, separating resources at regular intervals in space. Second, if dispersal is high but resource sharing is local, then random variation in population density creates small-scale variation in resource density, separating the resources from each other by chance. These results suggest that cross-feeding may be more robust than previously expected and offer strategies to engineer stable consortia.
(© 2018 The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies