Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Using gaze behavior to parcellate the explicit and implicit contributions to visuomotor learning.

Tytuł :
Using gaze behavior to parcellate the explicit and implicit contributions to visuomotor learning.
Autorzy :
de Brouwer AJ; Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada.
Albaghdadi M; Department of Psychology, Queen's University , Kingston, Ontario , Canada.
Flanagan JR; Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada.; Department of Psychology, Queen's University , Kingston, Ontario , Canada.
Gallivan JP; Centre for Neuroscience Studies, Queen's University , Kingston, Ontario , Canada.; Department of Psychology, Queen's University , Kingston, Ontario , Canada.; Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada.
Pokaż więcej
Źródło :
Journal of neurophysiology [J Neurophysiol] 2018 Oct 01; Vol. 120 (4), pp. 1602-1615. Date of Electronic Publication: 2018 Jul 11.
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Publication: Bethesda Md : American Physiological Society
Original Publication: Washington [etc.]
MeSH Terms :
Eye Movements*
Learning*
Psychomotor Performance*
Female ; Hand Strength ; Humans ; Male ; Rotation ; Sensorimotor Cortex/physiology ; Young Adult
References :
J Neurosci. 2005 Jan 12;25(2):473-8. (PMID: 15647491)
PLoS Comput Biol. 2011 Mar;7(3):e1001096. (PMID: 21390266)
J Neurosci. 2006 Sep 6;26(36):9107-16. (PMID: 16957067)
Can J Physiol Pharmacol. 1996 Apr;74(4):401-17. (PMID: 8828887)
Exp Brain Res. 2003 Oct;152(3):341-52. (PMID: 12904935)
J Neurophysiol. 2015 Jan 1;113(1):88-99. (PMID: 25253477)
Neuropsychologia. 2006;44(13):2594-606. (PMID: 16300804)
J Neurosci. 2006 Apr 5;26(14):3642-5. (PMID: 16597717)
Science. 1971 Feb 19;171(3972):701-3. (PMID: 5540314)
eNeuro. 2017 Mar 10;4(2):. (PMID: 28303262)
Neurobiol Learn Mem. 2016 Oct;134 Pt A:135-144. (PMID: 26743043)
J Neurosci. 2015 Apr 1;35(13):5109-17. (PMID: 25834038)
Trends Cogn Sci. 1999 Jan;3(1):4-11. (PMID: 10234221)
Nature. 1996 Jul 18;382(6588):252-5. (PMID: 8717039)
Learn Mem. 1999 Jan-Feb;6(1):47-53. (PMID: 10355523)
J Exp Psychol Hum Percept Perform. 1989 Aug;15(3):493-506. (PMID: 2527958)
Exp Brain Res. 2007 Apr;178(4):554-9. (PMID: 17361424)
J Neurophysiol. 2011 Jun;105(6):2843-51. (PMID: 21451054)
J Neurophysiol. 2007 Jul;98(1):54-62. (PMID: 17507504)
Prog Brain Res. 2005;147:251-62. (PMID: 15581711)
Psychol Aging. 2008 Mar;23(1):190-202. (PMID: 18361666)
J Exp Psychol Hum Percept Perform. 2006 Aug;32(4):1006-22. (PMID: 16846294)
J Neurophysiol. 2004 Oct;92(4):2405-12. (PMID: 15381748)
J Neurophysiol. 2004 Jul;92(1):10-9. (PMID: 15212434)
Nat Rev Neurosci. 2011 Oct 27;12(12):739-51. (PMID: 22033537)
J Neurophysiol. 2017 Aug 1;118(2):666-676. (PMID: 28356480)
PLoS One. 2016 Nov 3;11(11):e0164602. (PMID: 27812093)
Annu Rev Neurosci. 2010;33:89-108. (PMID: 20367317)
Trends Cogn Sci. 2003 Sep;7(9):415-423. (PMID: 12963473)
J Neurosci. 2015 Oct 21;35(42):14386-96. (PMID: 26490874)
Philos Trans R Soc Lond B Biol Sci. 1997 Aug 29;352(1358):1231-9. (PMID: 9304689)
Science. 2014 Sep 12;345(6202):1349-53. (PMID: 25123484)
Exp Brain Res. 1993;93(1):165-72. (PMID: 8467886)
J Mot Behav. 2002 Jun;34(2):126-38. (PMID: 12057886)
Brain. 1996 Feb;119 ( Pt 1):89-100. (PMID: 8624697)
J Mot Behav. 2012;44(6):445-53. (PMID: 23237467)
J Neurosci. 2000 Dec 1;20(23):8916-24. (PMID: 11102502)
J Neurophysiol. 2005 Apr;93(4):2254-62. (PMID: 15574799)
J Neurophysiol. 2000 Feb;83(2):639-51. (PMID: 10669480)
Prog Brain Res. 2014;210:217-53. (PMID: 24916295)
Exp Brain Res. 1986;62(2):293-302. (PMID: 3709714)
Brain. 1996 Aug;119 ( Pt 4):1199-211. (PMID: 8813283)
Biol Cybern. 1979 Nov 2;35(2):113-24. (PMID: 518932)
J Neurosci. 2001 Sep 1;21(17):6917-32. (PMID: 11517279)
J Cogn Neurosci. 2010 Sep;22(9):1917-30. (PMID: 19803691)
Perception. 1999;28(11):1311-28. (PMID: 10755142)
J Cogn Neurosci. 2016 Nov;28(11):1772-1783. (PMID: 27378328)
J Neurosci. 2014 Feb 19;34(8):3023-32. (PMID: 24553942)
J Neurophysiol. 2005 May;93(5):2809-21. (PMID: 15625094)
J Exp Psychol Hum Percept Perform. 2002 Apr;28(2):447-57. (PMID: 11999865)
Behav Brain Res. 2011 May 16;219(1):8-14. (PMID: 21138745)
J Neurophysiol. 2015 Jun 1;113(10):3836-49. (PMID: 25855690)
Exp Brain Res. 2003 Oct;152(4):528-32. (PMID: 14513189)
J Mot Behav. 1993 Jun;25(2):75-88. (PMID: 15064199)
Science. 1997 Aug 8;277(5327):821-5. (PMID: 9242612)
Grant Information :
Canada CIHR
Contributed Indexing :
Keywords: eye movements*; motor adaptation*; motor learning*; reaching visuomotor rotation*
Entry Date(s) :
Date Created: 20180712 Date Completed: 20190726 Latest Revision: 20191001
Update Code :
20201218
PubMed Central ID :
PMC6230798
DOI :
10.1152/jn.00113.2018
PMID :
29995600
Czasopismo naukowe
Successful motor performance relies on our ability to adapt to changes in the environment by learning novel mappings between motor commands and sensory outcomes. Such adaptation is thought to involve two distinct mechanisms: an implicit, error-based component linked to slow learning and an explicit, strategic component linked to fast learning and savings (i.e., faster relearning). Because behavior, at any given moment, is the resultant combination of these two processes, it has remained a challenge to parcellate their relative contributions to performance. The explicit component to visuomotor rotation (VMR) learning has recently been measured by having participants verbally report their aiming strategy used to counteract the rotation. However, this procedure has been shown to magnify the explicit component. Here we tested whether task-specific eye movements, a natural component of reach planning, but poorly studied in motor learning tasks, can provide a direct readout of the state of the explicit component during VMR learning. We show, by placing targets on a visible ring and including a delay between target presentation and reach onset, that individual differences in gaze patterns during sensorimotor learning are linked to participants' rates of learning and their expression of savings. Specifically, we find that participants who, during reach planning, naturally fixate an aimpoint rotated away from the target location, show faster initial adaptation and readaptation 24 h later. Our results demonstrate that gaze behavior cannot only uniquely identify individuals who implement cognitive strategies during learning but also how their implementation is linked to differences in learning. NEW & NOTEWORTHY Although it is increasingly well appreciated that sensorimotor learning is driven by two separate components, an error-based process and a strategic process, it has remained a challenge to identify their relative contributions to performance. Here we demonstrate that task-specific eye movements provide a direct read-out of explicit strategies during sensorimotor learning in the presence of visual landmarks. We further show that individual differences in gaze behavior are linked to learning rate and savings.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies