Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Control of directionality of chromatin folding for the inter- and intra-domain contacts at the Tfap2c-Bmp7 locus.

Tytuł:
Control of directionality of chromatin folding for the inter- and intra-domain contacts at the Tfap2c-Bmp7 locus.
Autorzy:
Tsujimura T; Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .
Takase O; Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Yoshikawa M; Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Sano E; Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Hayashi M; Apheresis and Dialysis Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Takato T; Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.; Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
Toyoda A; Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
Okano H; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Hishikawa K; Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .
Źródło:
Epigenetics & chromatin [Epigenetics Chromatin] 2018 Sep 14; Vol. 11 (1), pp. 51. Date of Electronic Publication: 2018 Sep 14.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : BioMed Central
MeSH Terms:
Chromatin Assembly and Disassembly*
Bone Morphogenetic Protein 7/*genetics
Transcription Factor AP-2/*genetics
Animals ; Binding Sites ; Bone Morphogenetic Protein 7/metabolism ; CCCTC-Binding Factor/metabolism ; Cell Line ; Humans ; Male ; Mice ; Protein Binding ; Transcription Factor AP-2/metabolism
References:
Nucleic Acids Res. 2013 Jan;41(Database issue):D188-94. (PMID: 23193294)
Genome Res. 2014 Mar;24(3):390-400. (PMID: 24398455)
Science. 2013 Jun 7;340(6137):1234167. (PMID: 23744951)
Nature. 2008 Feb 14;451(7180):796-801. (PMID: 18235444)
Genes Dev. 2016 May 15;30(10):1172-86. (PMID: 27198226)
Cell. 2012 Feb 3;148(3):458-72. (PMID: 22265598)
Science. 2009 Oct 9;326(5950):289-93. (PMID: 19815776)
Bioinformatics. 2011 Jan 15;27(2):270-1. (PMID: 21081511)
Genome Res. 2017 Jul;27(7):1139-1152. (PMID: 28536180)
Genome Res. 2016 Jan;26(1):70-84. (PMID: 26518482)
Science. 2015 Feb 27;347(6225):1017-21. (PMID: 25722416)
Cell. 2017 Oct 5;171(2):305-320.e24. (PMID: 28985562)
Nature. 2017 Sep 13;549(7671):219-226. (PMID: 28905911)
Cell. 2017 Dec 14;171(7):1573-1588.e28. (PMID: 29224777)
Elife. 2017 Jan 16;6:. (PMID: 28079019)
Cell Rep. 2013 May 30;3(5):1678-1689. (PMID: 23707059)
Cell. 2014 Dec 18;159(7):1665-80. (PMID: 25497547)
Cell. 2015 Aug 13;162(4):900-10. (PMID: 26276636)
Development. 2012 Mar;139(6):1045-57. (PMID: 22354838)
Nature. 2010 Sep 23;467(7314):430-5. (PMID: 20720539)
Am J Hum Genet. 2012 Oct 5;91(4):629-35. (PMID: 23022097)
Methods. 2012 Nov;58(3):221-30. (PMID: 22609568)
Nature. 2016 Oct 13;538(7624):265-269. (PMID: 27706140)
Nature. 2017 Mar 23;543(7646):519-524. (PMID: 28273065)
Cell Rep. 2016 May 31;15(9):2038-49. (PMID: 27210764)
Comp Med. 2008 Aug;58(4):347-52. (PMID: 18724776)
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65. (PMID: 26499245)
Cell. 2015 May 21;161(5):1012-1025. (PMID: 25959774)
Nat Genet. 2009 Aug;41(8):946-52. (PMID: 19633672)
Mol Cell. 2015 Nov 19;60(4):676-84. (PMID: 26527277)
Cell. 2017 May 4;169(4):693-707.e14. (PMID: 28475897)
Genome Biol. 2018 Oct 4;19(1):151. (PMID: 30286773)
Cell. 2017 May 18;169(5):930-944.e22. (PMID: 28525758)
Cell. 2014 Oct 9;159(2):374-387. (PMID: 25303531)
Cell Stem Cell. 2016 Feb 4;18(2):262-75. (PMID: 26686465)
Cell Rep. 2015 Feb 10;10(5):833-839. (PMID: 25660031)
Cell. 2013 Jun 6;153(6):1281-95. (PMID: 23706625)
Nature. 2012 Sep 6;489(7414):57-74. (PMID: 22955616)
Nature. 2012 Apr 11;485(7398):381-5. (PMID: 22495304)
Nature. 2014 Aug 7;512(7512):96-100. (PMID: 25043061)
Bioinformatics. 2015 Oct 1;31(19):3085-91. (PMID: 26034064)
Nucleic Acids Res. 2018 Jan 4;46(D1):D252-D259. (PMID: 29140464)
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7145-50. (PMID: 17442748)
Nat Genet. 2015 Oct;47(10):1179-1186. (PMID: 26323060)
J Biol Chem. 2014 Aug 1;289(31):21312-24. (PMID: 24907273)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7542-7. (PMID: 26034287)
Mol Cell. 2017 Feb 2;65(3):432-446.e5. (PMID: 28157505)
Dev Cell. 2016 Dec 5;39(5):529-543. (PMID: 27867070)
Nat Biotechnol. 2011 Jan;29(1):24-6. (PMID: 21221095)
Nat Genet. 2017 Oct;49(10):1539-1545. (PMID: 28846100)
Nature. 2012 Apr 11;485(7398):376-80. (PMID: 22495300)
PLoS Genet. 2015 Jan 08;11(1):e1004897. (PMID: 25569170)
Cell Rep. 2015 Mar 3;10(8):1297-309. (PMID: 25732821)
Nat Commun. 2015 Feb 03;2:6186. (PMID: 25645053)
Genome Biol. 2017 Aug 7;18(1):149. (PMID: 28784160)
Cell. 2007 Mar 23;128(6):1231-45. (PMID: 17382889)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
Nat Protoc. 2013 Nov;8(11):2281-2308. (PMID: 24157548)
Cell. 2017 Oct 19;171(3):557-572.e24. (PMID: 29053968)
Genes Dev. 2016 Dec 15;30(24):2657-2662. (PMID: 28087711)
Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
Nat Cell Biol. 2017 Aug;19(8):952-961. (PMID: 28737770)
Nature. 2017 Nov 2;551(7678):51-56. (PMID: 29094699)
Nature. 2016 Jan 21;529(7586):418-22. (PMID: 26760202)
Cell. 2017 Mar 23;169(1):13-23. (PMID: 28340338)
Grant Information:
16H06279 International Japan Society for the Promotion of Science; 15K18454 International Japan Society for the Promotion of Science; 17K16072 International Japan Society for the Promotion of Science; 15H03001 International Japan Society for the Promotion of Science; 25461208 International Japan Society for the Promotion of Science; 16K09602 International Japan Society for the Promotion of Science; 15K09244 International Japan Society for the Promotion of Science
Contributed Indexing:
Keywords: Boundary; CTCF; Chromatin conformation; Contact domains; cis interaction
Substance Nomenclature:
0 (Bone Morphogenetic Protein 7)
0 (CCCTC-Binding Factor)
0 (Tfap2c protein, mouse)
0 (Transcription Factor AP-2)
0 (bmp7 protein, mouse)
Entry Date(s):
Date Created: 20180915 Date Completed: 20181211 Latest Revision: 20230928
Update Code:
20240104
PubMed Central ID:
PMC6137755
DOI:
10.1186/s13072-018-0221-1
PMID:
30213272
Czasopismo naukowe
Background: Contact domains of chromatin serve as a fundamental unit to regulate action of enhancers for target genes. Looping between a pair of CCCTC-binding factor (CTCF)-binding sites in convergent orientations underlies the formation of contact domains, while those in divergent orientations establish domain boundaries. However, every CTCF site is not necessarily engaged in loop or boundary structures, leaving functions of CTCF in varied genomic contexts still elusive. The locus containing Tfap2c and Bmp7 encompasses two contact domains separated by a region between the two genes, termed transition zone (TZ), characterized by two arrays of CTCF sites in divergent configuration. In this study, we created deletion and inversion alleles of these and other regions across the locus and investigated how they impinge on the conformation.
Results: Deletion of the whole two CTCF arrays with the CRISPR/Cas9 system resulted in impairment of blocking of chromatin contacts by the TZ, as assessed by the circular chromatin conformation capture assay (4C-seq). Deletion and inversion of either of the two arrays similarly, but less pronouncedly, led to reduction in the blocking activity. Thus, the divergent configuration provides the TZ with the strong boundary activity. Uniquely, we show the TZ harbors a 50-kb region within one of the two arrays that contacts broadly with the both flanking intervals, regardless of the presence or orientation of the other CTCF array. Further, we show the boundary CTCF array has little impact on intra-domain folding; instead, locally associating CTCF sites greatly affect it.
Conclusions: Our results show that the TZ not only separates the two domains, but also bears a wide interval that shows isotropic behavior of chromatin folding, indicating a potentially complex nature of actual boundaries in the genome. We also show that CTCF-binding sites inside a domain greatly contribute to the intra-domain folding of chromatin. Thus, the study reveals diverse and context-dependent roles of CTCF in organizing chromatin conformation at different levels.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies