Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Circadian disruption favors alcohol consumption and differential ΔFosB accumulation in Corticolimbic structures.

Tytuł:
Circadian disruption favors alcohol consumption and differential ΔFosB accumulation in Corticolimbic structures.
Autorzy:
Reséndiz-Flores M; Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
Escobar C; Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
Źródło:
Addiction biology [Addict Biol] 2019 Nov; Vol. 24 (6), pp. 1179-1190. Date of Electronic Publication: 2018 Oct 08.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Hoboken, NJ : Wiley-Blackwell
Original Publication: Abingdon, Oxfordshire, UK ; Cambridge, MA : Carfax, c1996-
MeSH Terms:
Alcohol Drinking*
Circadian Rhythm*
Shift Work Schedule*
Brain/*drug effects
Central Nervous System Depressants/*pharmacology
Ethanol/*pharmacology
Proto-Oncogene Proteins c-fos/*drug effects
Animals ; Anxiety/metabolism ; Behavior, Animal ; Brain/metabolism ; Central Amygdaloid Nucleus/drug effects ; Central Amygdaloid Nucleus/metabolism ; Central Nervous System Depressants/administration & dosage ; Cerebral Cortex/drug effects ; Cerebral Cortex/metabolism ; Ethanol/administration & dosage ; Neuronal Plasticity ; Nucleus Accumbens/drug effects ; Nucleus Accumbens/metabolism ; Period Circadian Proteins/metabolism ; Prefrontal Cortex/drug effects ; Prefrontal Cortex/metabolism ; Proto-Oncogene Proteins c-fos/metabolism ; Random Allocation ; Rats ; Self Administration ; Stress, Psychological/metabolism ; Suprachiasmatic Nucleus/drug effects ; Suprachiasmatic Nucleus/metabolism
References:
Bell RL, Rodd ZA, Schultz JA, Peper CL, Lumeng L, Murphy JM, McBride WJ (2008) Effects of short deprivation and re-exposure intervals on the ethanol drinking behavior of selectively bred high alcohol-consuming rats. Alcohol 42:407-416.
Briones TL, Woods J (2013) Chronic binge-like alcohol consumption in adolescence causes depression-like symptoms possibly mediated by the effects of BDNF on neurogenesis. Neuroscience 254:324-334.
Broadwater M, Varlinskaya EI, Spear LP (2013) Effects of voluntary access to sweetened ethanol during adolescence on intake in adulthood. Alcohol Clin Exp Res 37:1048-1055.
Carnicella S, Ron D, Barak S (2014) Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol 48:243-252.
Chiesa J, Cambras T, Carpentieri A, Díez-Noguera A (2010) Arrhythmic rats after SCN lesions and constant light differ in short time scale regulation of locomotor activity. J Biol Rhythms 25:37-46.
Clark JW, Fixaris MC, Belanger GV, Rosenwasser AM (2007) Repeated light-dark phase shifts modulate voluntary ethanol intake in male and female high alcohol-drinking (HAD1) rats. Alcohol Clin Exp Res 31:1699-1706.
Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75-114.
Dong L, Bilbao A, Laucht M, Henriksson R, Yakovleva T, Ridinger M, Desrivieres S, Clarke TK, Lourdusamy A, Smolka MN, Cichon S, Blomeyer D, Treutlein J, Perreau-Lenz S, Witt S, Leonardi-Essmann F, Wodarz N, Zill P, Soyka M, Albrecht U, Rietschel M, Lathrop M, Bakalkin G, Spanagel R, Schumann G (2011) Effects of the circadian rhythm gene period 1 (Per1) on psychosocial stress-induced alcohol drinking. Am J Psychiatry 168:1090-1098.
Dorrian J, Heath G, Sargent C, Banks S, Coates A (2015) Alcohol use in shiftworkers. Accid Anal Prev .
Finn DA, Belknap JK, Cronise K, Yoneyama N, Murillo A, Crabbe JC (2005) A procedure to produce high alcohol intake in mice. Psychopharmacology (Berl) 178:471-480.
Gamsby JJ, Gulick D (2015) Chronic shifts in the length and phase of the light cycle increase intermittent alcohol drinking in C57BL/6J mice. Front Behav Neurosci 9:9.
Gamsby JJ, Templeton EL, Bonvini LA, Wang W, Loros JJ, Dunlap JC, Green AI, Gulick D (2013) The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels. Behav Brain Res 249:15-21.
Gardner EL (2011) Addiction and brain reward and antireward pathways. Adv Psychosom Med 30:22-60. https://doi.org/10.1159/000324065.
Gilpin NW, Karanikas CA, Richardson HN (2012) Adolescent binge drinking leads to changes in alcohol drinking, anxiety, and amygdalar corticotropin releasing factor cells in adulthood in male rats. PLoS One 7:e31466.
Gilpin NW, Koob GF (2008) Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res Health 31:185-195.
Goodwin FLW, Amir S, Amit Z (1999) Environmental lighting has a selective influence on ethanol intake in rats. Physiol Behav 66:323-328.
Grone B, Chang D, Bourgin P, Cao V, Fernald R, Heller H, Ruby N (2011) Acute light exposure suppresses circadian rhythms in clock gene expression. J Biol Rhythms 26:78-81.
Guido ME, de Guido LB, Goguen D, Robertson HA, Rusak B (1999) Daily rhythm of spontaneous immediate-early gene expression in the rat suprachiasmatic nucleus. J Biol Rhythms 14:275-280.
Hammer SB, Ruby CL, Brager AJ, Prosser RA, Glass JD (2010) Environmental modulation of alcohol intake in hamsters: effects of wheel running and constant light exposure. Alcohol Clin Exp Res 34:1651-1658.
Lebedev AA, Droblenkov AV, Shabanov PD (2008) Structural changes in mesocorticolimbic dopaminergic system of the brain during long-term alcoholization in rats. Bull Exp Biol Med 146:816-819.
Lee K-W, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci U S A 103:3399-3404.
Lesscher HMB, Vanderschuren LJMJ (2012) Compulsive drug use and its neural substrates. Rev Neurosci 23:731-745.
Lopez MF, Doremus-Fitzwater TL, Becker HC (2011) Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice. Alcohol 45:355-364.
Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stahlin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH (2013) Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci 33:2794-2806.
Morikawa Y, Sakurai M, Nakamura K, Nagasawa SY, Ishizaki M, Kido T, Naruse Y, Nakagawa H (2013) Correlation between shift-work-related sleep problems and heavy drinking in Japanese male factory workers. Alcohol Alcohol 48:202-206.
Naqvi NH, Bechara A (2009) The hidden island of addiction: the insula. Trends Neurosci 32:56-67.
Nestler EJ, Barrot M, Self DW (2001) FosB: a sustained molecular switch for addiction. Proc Natl Acad Sci 98:11042-11046.
Ozburn AR, Mayfield RD, Ponomarev I, Jones TA, Blednov YA, Harris RA (2012) Chronic self-administration of alcohol results in elevated ΔFosB: comparison of hybrid mice with distinct drinking patterns. BMC Neurosci 13:130.
Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature 417:329-335.
Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. 6th Edition. Academic Press, Elsevier: United Kingdom. ISBN 978-0-12-374243-8.
Peciña S (2008) Opioid reward ‘liking’ and ‘wanting’ in the nucleus accumbens. Physiol Behav 94:675-680.
Perrotti LI, Bolaños CA, Choi KH, Russo SJ, Edwards S, Ulery PG, Wallace DL, Self DW, Nestler EJ, Barrot M (2005) DeltaFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. Eur J Neurosci 21.
Perrotti LI, Weaver RR, Robison B, Renthal W, Maze I, Yazdani S, Elmore RG, Knapp DJ, Selley DE, Martin BR, Sim-Selley L, Bachtell RK, Self DW, Nestler EJ (2008) Distinct patterns of ??FosB induction in brain by drugs of abuse. Synapse 62:358-369.
Pfarr S, Meinhardt MW, Klee ML, Hansson AC, Vengeliene V, Schonig K, Bartsch D, Hope BT, Spanagel R, Sommer WH (2015) Losing control: excessive alcohol seeking after selective inactivation of cue-responsive neurons in the infralimbic cortex. J Neurosci 35:10750-10761.
Retson TA, Hoek JB, Sterling RC, Van Bockstaele EJ (2015) Amygdalar neuronal plasticity and the interactions of alcohol, sex, and stress. Brain Struct Funct 220:3211-3232.
Richter CP, Campbell KH (1940) Alcohol taste thresholds and concentrations of solution preferred by rats. Science (80-) 91:507-lp-508.
Rosenwasser AM (2015) Chronobiology of ethanol: animal models. Alcohol 49:311-319.
Rosenwasser AM, Clark JW, Fixaris MC, Belanger GV, Foster JA (2010) Effects of repeated light-dark phase shifts on voluntary ethanol and water intake in male and female Fischer and Lewis rats. Alcohol 44:229-237.
Rosenwasser AM, Fixaris MC (2013) Chronobiology of alcohol: studies in C57BL/6J and DBA/2J inbred mice. Physiol Behav 110-111:140-147.
Rosenwasser AM, Fixaris MC, Crabbe JC, Brooks PC, Ascheid S (2013) Escalation of intake under intermittent ethanol access in diverse mouse genotypes. Addict Biol 18:496-507.
Ruffle JK (2014) Molecular neurobiology of addiction: what's all the (Δ) FosB about? Am J Drug Alcohol Abuse 40:428-437.
Salgado-Delgado R, Ángeles-Castellanos M, Buijs MR, Escobar C (2008) Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 154:922-931.
Salgado-Delgado R, Nadia S, Angeles-Castellanos M, Buijs RM, Escobar C (2010) In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus. J Biol Rhythms 25:421-431.
Schwartz WJ, Carpino A, De La Iglesia HO, Baler R, Klein DC, Nakabeppu Y, Aronin N (2000) Differential regulation of fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus. Neuroscience 98:535-547.
Simms JA, Steensland P, Medina B, Abernathy KE, Chandler LJ, Wise R, Bartlett SE (2008) Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res 32:1816-1823.
Smith JE, Co C, McIntosh S, Cunningham CC (2008) Chronic binge-like moderate ethanol drinking in rats results in widespread decreases in brain serotonin, dopamine, and norepinephrine turnover rates reversed by ethanol intake. J Neurochem 105:2134-2155.
Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11:35-42.
Tapia-Osorio A, Salgado-Delgado R, Angeles-Castellanos M, Escobar C (2013) Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behav Brain Res 252:1-9.
Touitou Y, Reinberg A, Touitou D (2017) Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci 173:94-106.
Vengeliene V, Bilbao A, Spanagel R (2014) The alcohol deprivation effect model for studying relapse behavior: a comparison between rats and mice. Alcohol 48:313-320.
Grant Information:
IG-200417 International DGAPA-PAPIIT; 239403 International CONACyT
Contributed Indexing:
Keywords: accumbens; alcohol; binge; circadian disruption; ΔFosB
Substance Nomenclature:
0 (Central Nervous System Depressants)
0 (Fosb protein, rat)
0 (Per1 protein, rat)
0 (Period Circadian Proteins)
0 (Proto-Oncogene Proteins c-fos)
3K9958V90M (Ethanol)
Entry Date(s):
Date Created: 20181009 Date Completed: 20201028 Latest Revision: 20201028
Update Code:
20240104
DOI:
10.1111/adb.12674
PMID:
30295391
Czasopismo naukowe
Shift-work and exposure to light at night lead to circadian disruption, which favors the use of alcohol and may be a risk factor for development of addictive behavior. This study evaluated in two experimental models of circadian disruption behavioral indicators of elevated alcohol intake and looked for ΔFosB, which is a transcription factor for neuronal plasticity in corticolimbic structures. Male Wistar rats were exposed to experimental shift-work (AR) or to constant light (LL) and were compared with a control group (LD). After 4 weeks in their corresponding conditions, control LD rats remained rhythmic, AR rats exhibited a loss of day-night patterns in the brain and the LL rats showed arrhythmicity in general activity and day-night PER1 patterns in corticolimbic structures. During 12 days of exposure to 10 percent alcohol solution, the AR group showed daily increased alcohol intake while LD and LL rats ingested similar amounts. After 72 h of alcohol deprivation, AR and LL rats increased alcohol intake in a binge-like test; this could be due not only to circadian disruption but also to stress and/or anxiety developed from the AR and LL manipulations. Associated to the increased alcohol intake, the AR and LL rats had significant accumulation of ΔFosB in the nucleus accumbens shell and decreased ΔFosB in the infralimbic cortex. Data here reported confirm that the disruption of temporal patterns favors the increased alcohol consumption and that this is associated with a differential accumulation of ΔFosB which may favor the development of addictive behavior.
(© 2018 Society for the Study of Addiction.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies