Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Crackle and Breathing Phase Detection in Lung Sounds with Deep Bidirectional Gated Recurrent Neural Networks.

Tytuł :
Crackle and Breathing Phase Detection in Lung Sounds with Deep Bidirectional Gated Recurrent Neural Networks.
Autorzy :
Messner E
Fediuk M
Swatek P
Scheidl S
Smolle-Juttner FM
Olschewski H
Pernkopf F
Pokaż więcej
Źródło :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2018 Jul; Vol. 2018, pp. 356-359.
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Original Publication: [Piscataway, NJ] : [IEEE], [2007]-
MeSH Terms :
Neural Networks, Computer*
Respiratory Sounds*/diagnosis
Heart Sounds ; Humans ; Lung ; Respiration ; Sound ; Sound Spectrography/methods
Entry Date(s) :
Date Created: 20181117 Date Completed: 20190912 Latest Revision: 20200928
Update Code :
20210210
DOI :
10.1109/EMBC.2018.8512237
PMID :
30440410
Czasopismo naukowe
In this paper, we present a method for event detection in single-channel lung sound recordings. This includes the detection of crackles and breathing phase events (inspiration/expiration). Therefore, we propose an event detection approach with spectral features and bidirectional gated recurrent neural networks (BiGRNNs). In our experiments, we use multichannel lung sound recordings from lung-healthy subjects and patients diagnosed with idiopathic pulmonary fibrosis, collected within a clinical trial. We achieve an event-based F-score of F 1 ≈ 86% for breathing phase events and F 1 ≈ 72% for crackles. The proposed method shows robustness regarding the contamination of the lung sound recordings with noise, bowel and heart sounds.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies