Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH.

Tytuł:
Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH.
Autorzy:
Pagliarani C; Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.; Institute for Sustainable Plant Protection, National Research Council, Turin, Italy.
Casolo V; Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
Ashofteh Beiragi M; Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.
Cavalletto S; Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.
Siciliano I; Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.; AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of Turin, Grugliasco, Italy.
Schubert A; Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.
Gullino ML; Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.; AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of Turin, Grugliasco, Italy.
Zwieniecki MA; Department of Plant Sciences, UC Davis, Davis, California.
Secchi F; Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy.
Źródło:
Plant, cell & environment [Plant Cell Environ] 2019 Jun; Vol. 42 (6), pp. 1775-1787. Date of Electronic Publication: 2019 Mar 08.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Hoboken, NJ : John Wiley & Sons Ltd.
Original Publication: Oxford, UK : Blackwell Scientific Publications
MeSH Terms:
Stress, Physiological*
Carbohydrate Metabolism/*physiology
Metabolic Networks and Pathways/*physiology
Xylem/*metabolism
Carbohydrate Metabolism/genetics ; Carbohydrates ; Droughts ; Gene Expression Regulation, Plant ; Glucose/analysis ; Hydrogen-Ion Concentration ; Metabolic Networks and Pathways/genetics ; Monosaccharides/metabolism ; Osmosis ; Plant Leaves/metabolism ; Plant Stems/metabolism ; Populus/genetics ; Populus/metabolism ; Starch/analysis ; Water/metabolism ; Wood/chemistry ; Xylem/chemistry
Contributed Indexing:
Keywords: Populus; apoplastic pH; disaccharides; drought; gene expression; monosaccharides; recovery; starch
Substance Nomenclature:
0 (Carbohydrates)
0 (Monosaccharides)
059QF0KO0R (Water)
9005-25-8 (Starch)
IY9XDZ35W2 (Glucose)
Entry Date(s):
Date Created: 20190214 Date Completed: 20200427 Latest Revision: 20200427
Update Code:
20240105
DOI:
10.1111/pce.13533
PMID:
30756400
Czasopismo naukowe
Some plant species are capable of significant reduction of xylem embolism during recovery from drought despite stem water potential remains negative. However, the functional biology underlying this process is elusive. We subjected poplar trees to drought stress followed by a period of recovery. Water potential, hydraulic conductivity, gas exchange, xylem sap pH, and carbohydrate content in sap and woody stems were monitored in combination with an analysis of carbohydrate metabolism, enzyme activity, and expression of genes involved in sugar metabolic and transport pathways. Drought resulted in an alteration of differential partitioning between starch and soluble sugars. Upon stress, an increase in the starch degradation rate and the overexpression of sugar symporter genes promoted the efflux of disaccharides (mostly maltose and sucrose) to the apoplast. In turn, the efflux activity of the sugar-proton cotransporters caused a drop in xylem pH. The newly acidic environment induced the activity of apoplastic invertases leading to the accumulation of monosaccharides in the apoplast, thus providing the main osmoticum necessary for recovery. During drought and recovery, a complex network of coordinated molecular and biochemical signals was activated at the interface between xylem and parenchyma cells that appeared to prime the xylem for hydraulic recovery.
(© 2019 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies