Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A reference high-density genetic map of greater yam (Dioscorea alata L.).

Tytuł:
A reference high-density genetic map of greater yam (Dioscorea alata L.).
Autorzy:
Cormier F; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France. .; Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France. .
Lawac F; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.; VARTC, P.O. Box 231, Luganville, Santo, Vanuatu.
Maledon E; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
Gravillon MC; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
Nudol E; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
Mournet P; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; CIRAD, UMR AGAP, 34398, Montpellier, France.
Vignes H; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; CIRAD, UMR AGAP, 34398, Montpellier, France.
Chaïr H; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; CIRAD, UMR AGAP, 34398, Montpellier, France.
Arnau G; CIRAD, UMR AGAP, 97170, Petit-Bourg, Guadeloupe, France.; Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
Źródło:
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2019 Jun; Vol. 132 (6), pp. 1733-1744. Date of Electronic Publication: 2019 Feb 20.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer
MeSH Terms:
Genetic Linkage*
Genome, Plant*
Polymorphism, Single Nucleotide*
Quantitative Trait Loci*
Chromosomes, Plant/*genetics
Dioscorea/*genetics
Genomics/*methods
Chromosome Mapping ; Linkage Disequilibrium ; Phenotype ; Plant Breeding ; Reference Standards
References:
Abang MM, Hoffmann P, Winter S, Green KR, Wolf GA (2004) Vegetative compatibility among isolates of Colletotrichum gloeosporioides from yam (Dioscorea spp.) in Nigeria. J Phytopathol 152:21–27. (PMID: 10.1046/j.1439-0434.2003.00795.x)
Abraham K, Gopinathan Nair P (1990) Floral biology and artificial pollination in Dioscorea alata L. Euphytica 48:45–51.
Abraham K, Sreekumari MT, Sheela MN (2006) Seed production strategies and progeny selection in greater Yam breeding. In: 14th Triennial symposium of the international society for tropical root crops, India.
Andris M, Aradottir G, Arnau G et al (2010) Permanent genetic resources added to molecular ecology resources database 1 June 2010–31 July 2010. Mol Ecol Resour 10:1106–1108. (PMID: 10.1111/j.1755-0998.2010.02916.x21565125)
Arnau G, Nemorin A, Maledon E, Abraham K (2009) Revision of ploidy status of Dioscorea alata L. (Dioscoreaceae) by cytogenetic and microsatellite segregation analysis. Theor Appl Genet 118:1239–1249. (PMID: 10.1007/s00122-009-0977-619253018)
Arnau G, Nemorin A, Maledon E, Nudol E (2011) Advances on polyploid breeding in yam D. alata. In: Proceeding of the first international symposium on roots, Rhizomes, Tubers, Plantains, Bananas and Papaya. 7–10 November 2011 Santa Clara, Cuba.
Arnau G, Bhattacharjee R, Sheela MN, Chair H, Malapa R, Lebot V et al (2017) Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers. PLoS ONE 12(3):e0174150. (PMID: 10.1371/journal.pone.0174150283552935371318)
Ayensu ES, Coursey DG (1972) Guinea yams the botany, ethnobotany, use and possible future of yams in West Africa. Econ Bot 26:301–318. (PMID: 10.1007/BF02860700)
Bhattacharjee R, Nwadili CO, Saski CA et al (2018) An EST-SSR based genetic linkage map and identification of QTLs for anthracnose disease resistance in water yam (Dioscorea alata L.). PLoS ONE 13(10):e0197717. (PMID: 10.1371/journal.pone.0197717303039596179188)
Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. (PMID: 10.1093/bioinformatics/btg112)
Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128(1):175–182. (PMID: 20607751204446)
Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88(2):94–101. (PMID: 10.1038/sj.hdy.680001611932767)
Charlesworth D (2015) Plant contribution to our understanding of sex chromosome evolution. New Phytol 208:52–65. (PMID: 10.1111/nph.1349726053356)
Coursey DG (1967) Yams. Longmans, London, p 230.
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. (PMID: 10.1038/nrg301221681211)
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. (PMID: 10.1038/ng.806214788893083463)
Dereeper A, Nicolas S, Lecunff L et al (2015) SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinformatics 12:134. (PMID: 10.1186/1471-2105-12-134)
Egesi CN, Asiedu R (2002) Analysis of yam yields using the additive main effects and multiplicative interaction (AMMI) model. Afr Crop Sci J 10:195–201.
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. (PMID: 10.1371/journal.pone.0019379215732483087801)
Garsmeur O, Droc G, Antonise R et al (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2638. (PMID: 10.1038/s41467-018-05051-52998066229980662)
Gu Z (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. (PMID: 10.1093/bioinformatics/btu39324930139)
Herten K, Hestand MS, Vermeesch JR, Van Houdt J (2015) GBSX: a toolkit for experimental design and demultiplexing genotyping by sequencing experiments. BMC Bioinformatics 16:73. (PMID: 10.1186/s12859-015-0514-3258878934359581)
Hobza R, Kubat Z, Cegan R, Jesionek W, Vsykot B, Kejnovsky E (2015) Impact of repetitive DNA on sex chromosome evolution in plants. Chromosome Res 23:561–570. (PMID: 10.1007/s10577-015-9496-226474787)
Hobza R, Cegan R, Jesionek W, Vyskot B, Kubat Z (2017) Impact of repetitive elements on the Y chromosome formation in plants. Genes 8:302. (PMID: 10.3390/genes81103025704215)
Hochu I, Santoni S, Bousalem M (2006) Isolation, characterization and cross-species amplification of microsatellite DNA loci in the tropical American yam Dioscorea trifida. Mol Ecol Notes 6:137–140. (PMID: 10.1111/j.1471-8286.2005.01166.x)
Khan MA, Han Y, Zhao YF, Troggio M, Korban SS (2012) A multi-population consensus genetic map reveals inconsistent marker order among maps likely attributed to structural variations in the apple genome. PLoS ONE 7(11):e47864. (PMID: 10.1371/journal.pone.0047864231448323489900)
Knaus BJ, Grünwald NJ (2017) VCFR: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour 17:44–53. (PMID: 10.1111/1755-0998.1254927401132)
Kumar S, Kumari R, Sharma V (2014) Genetics of dioecy and causal sex chromosomes in plants. J Genet 93:241–277. (PMID: 10.1007/s12041-014-0326-724840848)
Mace ES, Rami JF, Bouchet S et al (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13. (PMID: 10.1186/1471-2229-9-13191710672671505)
Martin FW (1966) Sex ratio and sex determination in Dioscorea. J Hered 57:95–99. (PMID: 10.1093/oxfordjournals.jhered.a107485)
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17:10–12. (PMID: 10.14806/ej.17.1.200)
Mignouna HD, Mank RA, Ellis THN et al (2002) A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theo Appl Genet 105:726–735. (PMID: 10.1007/s00122-002-0912-6)
Misuki I, Tani N, Ishida K, Tsumura Y (2005) Development and characterization of microsatellite markers in a clonal plant, Dioscorea japonica Thunb. Mol Ecol Notes 5:721–723. (PMID: 10.1111/j.1471-8286.2005.01020.x)
Muzac-Tucker I, Asemota HN, Ahmad MH (1993) Biochemical composition and storage of Jamaican yams (Dioscorea spp.). J Sci Food Agric 62(3):219–224. (PMID: 10.1002/jsfa.2740620303)
Obidiegwu J, Rodriguez E, Ene-Obong E et al (2010) Ploidy levels of Dioscorea alata L. germplasm determined by flow cytometry. Genet Resour Crop Evol 57(3):351–356. (PMID: 10.1007/s10722-009-9473-8)
Otto SP, Pannell JR, Peichel CL et al (2011) About PAR: the distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet 27:358–367. (PMID: 10.1016/j.tig.2011.05.00121962971)
Petro D, Onyeka TJ, Etienne S, Rubens S (2011) An intraspecific genetic map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Euphytica 179:405–416. (PMID: 10.1007/s10681-010-0338-1)
Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE. https://doi.org/10.1371/journal.pone.0032253. (PMID: 10.1371/journal.pone.0032253224388983306392)
R Core Team (2017) R: a language and environment for statistical computing. https://www.R-project.org/.
Risterucci AM, Hippolyte I, Perrier X et al (2009) Development and assessment of diversity arrays technology for highthroughput DNA analyses in Musa. Theor Appl Genet 119:1093–1103. (PMID: 10.1007/s00122-009-1111-519693484)
Sartie A, Asiedu R (2014) Segregation of vegetative and reproductive traits associated with tuber yield and quality in water yam (Dioscorea alata L.). Afric J Biotech 13(28):2807–2818. (PMID: 10.5897/AJB2014.13839)
Saski CA, Bhattacharjee R, Scheffler BE, Asiedu R (2015) Genomic resources for water yam (Dioscorea alata L.): analyses of EST-sequences, de novo sequencing and GBS libraries. PLoS ONE 10(7):e0134031. (PMID: 10.1371/journal.pone.0134031262226164519108)
Tamiru M, Natsume S, Takagi H et al (2017) Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biol 15:86. (PMID: 10.1186/s12915-017-0419-x289274005604175)
Terauchi R, Kahl Günter (1999) Mapping of the Dioscorea tokoro genome: AFLP markers linked to sex. Genome 42:757–762. (PMID: 10.1139/g99-001)
Terauchi R, Konuma A (1994) Microsatellite polymorphism in Dioscorea tokoro, a wild yam species. Genome 37:794–801. (PMID: 10.1139/g94-1138001812)
Tostain S, Scarcelli N, Brottier P, Marchand JL, Pham JL, Noyer JL (2006) Development of DNA microsatellite markers in tropical yam (Dioscorea sp.). Mol Ecol Notes 6:173–175. (PMID: 10.1111/j.1471-8286.2005.01182.x)
Van Ooijen JW (2012) JoinMap 4.1, software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma B.V., Wageningen.
Viruel J, Segarra-Moragues JG, Raz L et al (2016) Late cretaceous-early eocene origin of yams (Dioscorea, Dioscoreaceae) in the Laurasian Palaearctic and their subsequent Oligocene-Miocene diversification. J Biogeogr 43:750–762. (PMID: 10.1111/jbi.12678)
Ward JA, Bhangoo J, Fernández-Fernández F et al (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genom 14:2. (PMID: 10.1186/1471-2164-14-2)
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York. (PMID: 10.1007/978-3-319-24277-4)
Wilkin P, Schols P, Chase MW et al (2005) A plastid gene phylogeny of the yam genus, Dioscorea roots, fruits and madagascar. Syst Bot 30:736–749. (PMID: 10.1600/036364405775097879)
Zhang L, Wang S, Li H et al (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071. (PMID: 10.1007/s00122-010-1372-z20535442)
Grant Information:
OPP1052998 Bill and Melinda Gates Foundation; Feder 2014-2017 European Union and Guadeloupe Region; Master grant French ambassy in Vanuatu; Master grant Vanuatu Agricultural Research and Technical Centre
Entry Date(s):
Date Created: 20190221 Date Completed: 20191206 Latest Revision: 20220408
Update Code:
20240104
PubMed Central ID:
PMC6531416
DOI:
10.1007/s00122-019-03311-6
PMID:
30783744
Czasopismo naukowe
Key Message: This study generated the first high-density genetic map for D. alata based on genotyping-by-sequencing and provides new insight on sex determination in yam. Greater yam (Dioscorea alata L.) is a major staple food in tropical and subtropical areas. This study aimed to produce the first reference genetic map of this dioecious species using genotyping-by-sequencing. In this high-density map combining information of two F1 outcrossed populations, 20 linkage groups were resolved as expected and 1579 polymorphic markers were ordered. The consensus map length was 2613.5 cM with an average SNP interval of 1.68 cM. An XX/XY sex determination system was identified on LG6 via the study of sex ratio, homology of parental linkage groups and the identification of a major QTL for sex determination. Homology with the sequenced D. rotundata is described, and the median physical distance between SNPs was estimated at 139.1 kb. The effects of segregation distortion and the presence of heteromorphic sex chromosomes are discussed. This D. alata linkage map associated with the available genomic resources will facilitate quantitative trait mapping, marker-assisted selection and evolutionary studies in the important yet scarcely studied yam species.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies