Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

New Human Chromosomal Sites with "Safe Harbor" Potential for Targeted Transgene Insertion.

Tytuł:
New Human Chromosomal Sites with "Safe Harbor" Potential for Targeted Transgene Insertion.
Autorzy:
Pellenz S; 1Department of Pathology, University of Washington, Seattle, Washington.
Phelps M; 1Department of Pathology, University of Washington, Seattle, Washington.
Tang W; 1Department of Pathology, University of Washington, Seattle, Washington.
Hovde BT; 2Department of Genome Sciences, University of Washington, Seattle, Washington.
Sinit RB; 1Department of Pathology, University of Washington, Seattle, Washington.
Fu W; 2Department of Genome Sciences, University of Washington, Seattle, Washington.
Li H; 1Department of Pathology, University of Washington, Seattle, Washington.
Chen E; 1Department of Pathology, University of Washington, Seattle, Washington.
Monnat RJ Jr; 1Department of Pathology, University of Washington, Seattle, Washington.; 2Department of Genome Sciences, University of Washington, Seattle, Washington.
Źródło:
Human gene therapy [Hum Gene Ther] 2019 Jul; Vol. 30 (7), pp. 814-828. Date of Electronic Publication: 2019 Mar 28.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: New York : M.A. Liebert, c1990-
MeSH Terms:
Chromosomes, Human*
Mutagenesis, Insertional*
Transgenes*
Base Sequence ; CRISPR-Cas Systems ; Cell Line ; Chromosome Breakpoints ; Gene Editing ; Gene Expression ; Gene Knock-In Techniques ; Gene Targeting ; Genetic Loci ; Genome, Human ; Geographic Mapping ; Humans
References:
Methods Mol Biol. 2014;1123:245-64. (PMID: 24510271)
Cold Spring Harb Perspect Biol. 2013 Nov 01;5(11):a012740. (PMID: 24097900)
Mol Cell Biol. 2010 Apr;30(8):1887-97. (PMID: 20154148)
Mol Cell Biol. 1987 Aug;7(8):2745-52. (PMID: 3670292)
Genome Res. 2010 Aug;20(8):1133-42. (PMID: 20508142)
Cell. 1996 Aug 9;86(3):367-77. (PMID: 8756719)
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15090-15095. (PMID: 27956629)
Nucleic Acids Res. 2012 Mar;40(6):2587-98. (PMID: 22121229)
PLoS One. 2014 Mar 19;9(3):e92444. (PMID: 24647355)
Methods Mol Biol. 2014;1123:151-63. (PMID: 24510267)
J Mol Biol. 1998 Jul 17;280(3):345-53. (PMID: 9665841)
Nat Methods. 2015 Apr;12(4):326-8. (PMID: 25730490)
Nature. 2012 Nov 1;491(7422):56-65. (PMID: 23128226)
Int J Cancer. 1967 Sep 15;2(5):434-47. (PMID: 6081590)
Front Oncol. 2013 Jul 17;3:183. (PMID: 23882450)
Brief Bioinform. 2013 Mar;14(2):144-61. (PMID: 22908213)
Mol Cell Biol. 1998 Jul;18(7):4070-8. (PMID: 9632791)
Cell. 2002 Aug 23;110(4):521-9. (PMID: 12202041)
Nucleic Acids Res. 2009 Apr;37(5):1650-62. (PMID: 19153140)
Nucleic Acids Res. 2011 Jul;39(12):e82. (PMID: 21493687)
J Virol. 1998 Nov;72(11):8463-71. (PMID: 9765382)
Semin Cell Dev Biol. 2017 Dec;72:19-32. (PMID: 29127046)
Curr Gene Ther. 2006 Dec;6(6):633-45. (PMID: 17168696)
Nat Biotechnol. 2013 Sep;31(9):827-32. (PMID: 23873081)
Mol Ther. 2016 Apr;24(4):678-84. (PMID: 26867951)
Stem Cell Res. 2016 Mar;16(2):377-86. (PMID: 26921872)
Nucleic Acids Res. 2017 Jun 20;45(11):e102. (PMID: 28335006)
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W117-22. (PMID: 22693217)
Nat Rev Mol Cell Biol. 2014 Jun;15(6):369-83. (PMID: 24824069)
Nat Rev Cancer. 2011 Dec 01;12(1):51-8. (PMID: 22129804)
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3789-94. (PMID: 9108056)
Nucleic Acids Res. 2018 Jul 2;46(W1):W65-W70. (PMID: 29800226)
Nat Genet. 2013 Jun;45(6):580-5. (PMID: 23715323)
Nature. 2012 Sep 6;489(7414):57-74. (PMID: 22955616)
EMBO J. 1992 Dec;11(13):5071-8. (PMID: 1334463)
Nat Biotechnol. 2007 Dec;25(12):1477-82. (PMID: 18037879)
Nucleic Acids Res. 2019 Jan 8;47(D1):D853-D858. (PMID: 30407534)
Gene Ther. 2013 Feb;20(2):201-14. (PMID: 22436965)
Nature. 2015 Oct 1;526(7571):68-74. (PMID: 26432245)
Science. 2012 Feb 17;335(6070):823-8. (PMID: 22344438)
Genome Res. 2014 Jan;24(1):142-53. (PMID: 24179142)
Nucleic Acids Res. 2012 Jul;40(13):6367-79. (PMID: 22467209)
J Clin Invest. 2014 Oct;124(10):4154-61. (PMID: 25271723)
Nat Biotechnol. 2011 Jan;29(1):73-8. (PMID: 21151124)
Nucleic Acids Res. 2011 May;39(10):4330-9. (PMID: 21288879)
Science. 2013 Feb 15;339(6121):819-23. (PMID: 23287718)
Nature. 2017 Apr 12;544(7649):235-239. (PMID: 28406212)
Nat Methods. 2012 Oct;9(10):973-5. (PMID: 22941364)
PLoS Biol. 2004 Aug;2(8):E234. (PMID: 15314653)
Cold Spring Harb Protoc. 2012 Feb 01;2012(2):199-204. (PMID: 22301656)
Nature. 2016 Dec 1;540(7631):144-149. (PMID: 27851729)
Grant Information:
P01 CA077852 United States CA NCI NIH HHS
Contributed Indexing:
Keywords: Cas9 nucleases; gene therapy; genome editing; human genome; transgene insertion site; “safe harbor” site
Entry Date(s):
Date Created: 20190223 Date Completed: 20200312 Latest Revision: 20211030
Update Code:
20240104
PubMed Central ID:
PMC6648220
DOI:
10.1089/hum.2018.169
PMID:
30793977
Czasopismo naukowe
This study identified 35 new sites for targeted transgene insertion that have the potential to serve as new human genomic "safe harbor" sites (SHS). SHS potential for these 35 sites, located on 16 chromosomes, including both arms of the human X chromosome, and for the existing human SHS AAVS1 , hROSA26 , and CCR5 was assessed using eight different desirable, widely accepted criteria for SHS verifiable with human genomic data. Three representative newly identified sites on human chromosomes 2 and 4 were then experimentally validated by in vitro and in vivo cleavage-sensitivity tests, and analyzed for population-level and cell line-specific sequence variants that might confound site targeting. The highly ranked site on chromosome 4 (SHS231) was further characterized by targeted homology-dependent and -independent transgene insertion and expression in different human cell lines. The structure and fidelity of transgene insertions at this site were confirmed, together with analyses that demonstrated stable expression and function of transgene-encoded proteins, including fluorescent protein markers, selectable marker cassettes, and Cas9 protein variants. SHS-integrated transgene-encoded Cas9 proteins were shown to be capable of introducing a large (17 kb) gRNA-specified deletion in the PAX3/FOXO1 fusion oncogene in human rhabdomyosarcoma cells and as a Cas9-VPR fusion protein to upregulate expression of the muscle-specific transcription factor MYF5 in human rhabdomyosarcoma cells. An engineering "toolkit" was developed to enable easy use of the most extensively characterized of these new human sites, SHS231, located on the proximal long arm of chromosome 4. The target sites identified here have the potential to serve as additional human SHS to enable basic and clinical gene editing and genome-engineering applications.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies