Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Development of a goosegrass (Eleusine indica) draft genome and application to weed science research.

Tytuł:
Development of a goosegrass (Eleusine indica) draft genome and application to weed science research.
Autorzy:
Zhang H; Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA.
Hall N; Department of Biological Sciences, Auburn University, Auburn, AL, USA.
Goertzen LR; Department of Biological Sciences, Auburn University, Auburn, AL, USA.
Bi B; Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA.
Chen CY; Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA.
Peatman E; School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA.
Lowe EK; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, USA.
Patel J; Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA.
McElroy JS; Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA.
Źródło:
Pest management science [Pest Manag Sci] 2019 Oct; Vol. 75 (10), pp. 2776-2784. Date of Electronic Publication: 2019 Apr 10.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
MeSH Terms:
Genome, Plant*
Weed Control*
Eleusine/*genetics
Plant Weeds/*genetics
Herbicide Resistance/genetics
References:
Chao WS, Horvath DP, Anderson JV and Foley ME, Potential model weeds to study genomics, ecology, and physiology in the 21st century. Weed Sci 53:929-937 (2005).
Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, Aruna YR et al., Genome and Transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:465 (2017).
Ma XY, Wu HW, Jiang WL, Ma YJ and Ma Y, Goosegrass (Eleusine indica) density effects on cotton (Gossypium hirsutum). Integr Agric 14:1778-1785 (2015).
McElroy JS, Head WB, Wehtje GR and Spak D, Identification of goosegrass (Eleusine indica) biotypes resistant to preemergence-applied oxadiazon. Weed Technol 31:675-681 (2017).
Heap I, The International Survey of Herbicide Resistant Weeds. Available: http://www.weedscience.org (2018).
Ravet K, Patterson EL, Krähmer H, Hamouzová K, Fan L, Jasieniuk M et al., The power and potential of genomics in weed biology and management. Pest Manag Sci 74:2216-2225 (2018). https://doi.org/10.1002/ps.5048.
Carino FA, Koener JF, Plapp FW Jr and Feyereisen R, Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol 24:411-418 (1994).
Le Goff G, Boundy S, Daborn PJ, Yen JL, Sofer L, Lind R et al., Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem Mol Biol 33:701-708 (2003).
Lee RM, Thimmapuram J, Thinglum KA, Gong G, Hernandez AG, Wright CL et al., Sampling the waterhemp (Amaranthus tuberculatus) genome using pyrosequencing technology. Weed Sci 57:463-469 (2009).
Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M et al., De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiol 166:1241-1254 (2014).
Guo L, Qiu J, Ye C, Jin G, Mao L, Zhang H et al., Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat Commun 8:1031 (2017).
Dorn KM, Fankhauser JD, Wyse DL and Marks MD, A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Res 22:121-131 (2015).
Moghe GD, Hufnagel DE, Tang H, Xiao Y, Dworkin I, Town CD et al., Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish (Raphanus raphanistrum) and three other Brassicaceae species. Plant Cell 26:1925-1937 (2014).
Kew, State of the World's Plants. Available: https://stateoftheworldsplants.com (2017).
Chen S, McElroy JS, Dane F and Peatman E, Optimizing transcriptome assemblies for leaf and seedling by combining multiple assemblies from three de novo assemblers. Plant Genome 8:1 (2015).
Zhang H, Hall N, McElroy JS, Lowe EK and Goertzen LR, Complete plastid genome sequence of goosegrass (Eleusine indica) and comparison with other Poaceae. Gene 600:36-43 (2017).
Babraham Bioinformatics, FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Institute, Cambridge (2011).
Bolger AM, Lohse M and Usadel B, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120 (2014).
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al., Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644-652 (2011).
Durai DA and Schulz MH, In-silico read normalization using set multi-cover optimization. Bioinformatics 34:3273-3280 (2018).
Zerbino DR and Birney E, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821-829 (2008).
Boetzer M, Henkel CV, Jansen HJ, Butler D and Pirovano W, Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578-579 (2011).
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al., SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18 (2012).
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV and Zdobnov EM, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210-3212 (2015).
Li H, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genomics arXiv:1303.3997 (2013).
Smit AFA and Hubley R, RepeatModeler Open-1.0. 2008-2015. (2015). Available: http://www.repeatmasker.org [Accessed May 1 2018].
Smit AFA, Hubley R and Green P, RepeatMasker Open-4.0. 2013-2015. (2015). Available: http://www.repeatmasker.org [accessed 23 May 2018].
Stanke M, Steinkamp R, Waack S and Morgenstern B, AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32:309-312 (2004).
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ et al., High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420-3435 (2008).
Emms DM and Kelly S, OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:157 (2015).
Rambaut A, FigTree. Tree Figure Drawing Tool Version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK (2009).
Soderlund C, Bomhoff M and Nelson WM, SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39:e68 (2011).
Yuan JS, Tranel PJ and Stewart CN, Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6-13 (2007).
Thiel T, MISA-Microsatellite identification tool Website http://pgrc.ipk-gatersleben.de/misa/[accessed 17 June 2016] (2003).
Mahesh HB, Shirke MD, Singh S, Rajamani A, Hittalmani S, Wang G et al., Indica rice genome assembly, annotation and mining of blast disease resistance genes. BMC Genomics 17:242 (2016).
Vignal A, Milan D, SanCristobal M and Eggen A, A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275-305 (2002).
VanBuren R, Bryant D, Edger PP, Tang H, Burgess D, Challabathula D et al., Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature 527:508 (2015).
Xu Q, Chen LL, Ruan D, Chen A, Zhu C, Chen D et al., The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59-66 (2013).
Pop M and Salzberg SL, Bioinformatics challenges of new sequencing technology. Trends Genet 24:142-149 (2008).
Schatz MC, Witkowski J and McCombie WR, Current challenges in de novo plant genome sequencing and assembly. Genome Biol 13:243 (2012).
Tang H, Bowers JE, Wang X, Ming R, Alam M and Paterson AH, Synteny and collinearity in plant genomes. Science 320:486-488 (2008).
Salse J, Piégu B, Cooke R and Delseny M, New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396-409 (2004).
Hawkes NJ and Hemingway J, Analysis of the promoters for the β-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus. Biochim Biophys Acta 1574:51-62 (2002).
He S, Wang Y, Volis S, Li D and Yi T, Genetic diversity and population structure: implications for conservation of wild soybean (glycine sojaSieb. et Zucc) based on nuclear and chloroplast microsatellite variation. Int J Mol Sci 13:12608-12628 (2012).
Melotto-Passarin DM, Tambarussi EV, Dressano K, de Martin VF and Carrer H, Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. Genet Mol Res 10:2024-2033 (2011).
Nie X, Lv S, Zhang Y, Du X, Wang L, Biradar SS et al., Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLOS ONE 7:e36869 (2012).
Miles C and Wayne M, Quantitative trait locus (QTL) analysis. Nat Educ 1:208 (2008).
Geng X, Sha J, Liu S, Bao L, Zhang J, Wang R et al., A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genomics 16:196 (2015).
Alexander RP, Fang G, Rozowsky J, Snyder M and Gerstein MB, Annotating non-coding regions of the genome. Nat Rev Genet 11:559 (2010).
Lupski JR, Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417-422 (1998).
Goh SS, Yu Q, Han H, Vila-Aiub MM, Busi R and Powles SB, Non-target-site glyphosate resistance in Echinochloa colona from Western Australia. Crop Prot 112:257-263 (2018).
Kleinman Z and Rubin B, Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Manag Sci 73:246-253 (2017).
Mei Y, Si C, Liu M, Qiu L and Zheng M, Investigation of resistance levels and mechanisms to nicosulfuron conferred by non-target-site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China. Pestic Biochem Physiol 141:84-89 (2017).
Zhao B, Fu D, Yu Y, Huang C, Yan K, Li P et al., Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population. Pestic Biochem Physiol 140:79-84 (2017).
Contributed Indexing:
Keywords: goosegrass; herbicide resistance; weed evolution; weed genome
Entry Date(s):
Date Created: 20190310 Date Completed: 20191211 Latest Revision: 20200108
Update Code:
20240105
DOI:
10.1002/ps.5389
PMID:
30851005
Czasopismo naukowe
Background: Genomes are vital to the study of genomics, population genetics, and evolution of species. To date, only one genome (Echinochloa crus-galli) for C4 annual weedy grass species has been sequenced. Research was conducted to develop a draft genome of goosegrass (Eleusine indica; 2n = 2x = 18), one of the most common and troublesome weeds in the world.
Results: A draft assembly of an approximately 492 Mb whole-genome sequence of goosegrass was obtained by de novo assembly of paired-end and mate-paired reads generated by Illumina sequencing of total genomic DNA. The genome was assembled into 24,072 scaffolds with N50 = 233,459 bp. More than 99% of transcriptome sequences were mapped to the goosegrass draft genome, and 95% of the commonly conserved plant genes were present. The assembled genome contains 25,467 unique protein-coding genes. Genes associated with herbicide resistance were obtained and variant calling allowed the detection of 754,409 single nucleotide polymorphisms. In addition, we also report 115,417 simple sequence repeats which can be deployed in population genetics and phylogenetic analysis.
Conclusion: This is the first report of genome sequence of goosegrass. Our assembly was able to identify all major herbicide-resistance related genes and develop a useful tool for other genomic and evolutionary analysis. © 2019 Society of Chemical Industry.
(© 2019 Society of Chemical Industry.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies