Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Characterisation and origins of melanin-concentrating hormone immunoreactive fibres of the posterior lobe of the pituitary and median eminence during lactation in the Long-Evans rat.

Tytuł:
Characterisation and origins of melanin-concentrating hormone immunoreactive fibres of the posterior lobe of the pituitary and median eminence during lactation in the Long-Evans rat.
Autorzy:
Costa HC; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.
Da-Silva JM; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.
Diniz GB; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.
Motta-Teixeira LC; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Da-Silva RJ; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.
Battagello DS; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.; Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo (USP), São Paulo, Brazil.
Sita LV; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.
de-Moraes Machado C; Department of Anatomy, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil.
Horta-Júnior JAC; Department of Anatomy, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil.; Electron Microscopy Center, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil.
Bittencourt JC; Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.; Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo (USP), São Paulo, Brazil.
Źródło:
Journal of neuroendocrinology [J Neuroendocrinol] 2019 Sep; Vol. 31 (9), pp. e12723. Date of Electronic Publication: 2019 May 23.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
MeSH Terms:
Hypothalamic Hormones/*metabolism
Median Eminence/*cytology
Median Eminence/*metabolism
Melanins/*metabolism
Pituitary Gland/*cytology
Pituitary Gland/*metabolism
Pituitary Hormones/*metabolism
Animals ; Female ; Lactation/metabolism ; Oxytocin/metabolism ; Protein Precursors/metabolism ; RNA, Messenger/metabolism ; Rats, Long-Evans
References:
Vaughan JM, Fischer WH, Hoeger C, Rivier J, Vale W. Characterization of melanin-concentrating hormone from rat hypothalamus. Endocrinology. 1989;125:1660-1665.
Nahon J-L, Presse F, Bittencourt JC, Sawchenko PE, Vale W. The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology. 1989;125:2056-2065.
Naufahu J, Cunliffe AD, Murray JF. The roles of melanin-concentrating hormone in energy balance and reproductive function: are they connected? Reproduction. 2013;146:R141-R150.
Diniz GB, Bittencourt JC. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci. 2017;11:32.
Knollema S, Brown ER, Vale W, Sawchenko PE. Novel hypothalamic and preoptic sites of prepro-melanin-concentrating hormone messenger ribonucleic acid and peptide expression in lactating rats. J Neuroendocrinol. 1992;4:709-717.
Rondini TA, Donato J Jr, Rodrigues Bde C, Bittencourt JC, Elias CF. Chemical identity and connections of medial preoptic area neurons expressing melanin-concentrating hormone during lactation. J Chem Neuroanat. 2010;39:51-62.
Numan M. Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behav Cogn Neurosci Rev. 2006;5:163-190.
Numan M, Stolzenberg DS. Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front Neuroendocrinol. 2009;30:46-64.
Benedetto L, Pereira M, Ferreira A, Torterolo P. Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides. 2014;58:20-25.
Alachkar A, Alhassen L, Wang Z, et al. Inactivation of the melanin concentrating hormone system impairs maternal behavior. Eur Neuropsychopharmacol. 2016;26:1826-1835.
van Leeuwen FW, de Raay C, Swaab DF, Fisser B. The localization of oxytocin, vasopressin, somatostatin and luteinizing hormone releasing hormone in the rat neurohypophysis. Cell Tissue Res. 1979;202:189-201.
Bittencourt JC, Presse F, Arias C, et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol. 1992;319:218-245.
Mickelsen LE, Kolling FWT, Chimileski BR, et al. Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro. 2017;4:pii: ENEURO.0013-17.2017.
Chard T, Boyd NR, Forsling ML, McNeilly AS, Landon J. The development of a radioimmunoassay for oxytocin: the extraction of oxytocin from plasma, and its measurement during parturition in human and goat blood. J Endocrinol. 1970;48:223-234.
Folley SJ, Knaggs GS. Milk-ejection activity (oxytocin) in the external jugular vein blood of the cow, goat and sow, in relation to the stimulus of milking or suckling. J Endocrinol. 1966;34:197-214.
Champagne F, Diorio J, Sharma S, Meaney MJ. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci U S A. 2001;98:12736-12741.
Pedersen CA, Caldwell JD, Walker C, Ayers G, Mason GA. Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci. 1994;108:1163-1171.
Parkes DG, Vale WW. Contrasting actions of melanin-concentrating hormone and neuropeptide-E-I on posterior pituitary function. Ann N Y Acad Sci. 1993;680:588-590.
National Research Council of the National Academy of Sciences. Guide for the Care and Use of Laboratory Animals. Washington, DC: The National Academies Press; 2011.
Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol. 2002;62:609-614.
Cvetkovic V, Brischoux F, Griffond B, et al. Evidence of melanin-concentrating hormone-containing neurons supplying both cortical and neuroendocrine projections. Neuroscience. 2003;116:31-35.
Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol. 1998;395:535-547.
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Cambridge, MA: Academic Press; 2013.
Abercrombie M. Estimation of nuclear population from microtome sections. The anatomical record. 1946;94:239-247.
Ju G, Liu S, Tao J. Projections from the hypothalamus and its adjacent areas to the posterior pituitary in the rat. Neuroscience. 1986;19:803-828.
Sita LV, Elias CF, Bittencourt JC. Connectivity pattern suggests that incerto-hypothalamic area belongs to the medial hypothalamic system. Neuroscience. 2007;148:949-969.
Alvisi R, Diniz G, Da-Silva J, Bittencourt J, Felicio L. Suckling-induced Fos activation and melanin-concentrating hormone immunoreactivity during late lactation. Life Sci. 2016;148:241-246.
Chiocchio SR, Gallardo MG, Louzan P, Gutnisky V, Tramezzani JH. Melanin-concentrating hormone stimulates the release of luteinizing hormone-releasing hormone and gonadotropins in the female rat acting at both median eminence and pituitary levels. Biol Reprod. 2001;64:1466-1472.
Kiss A, Mikkelsen JD. Oxytocin-anatomy and functional assignments: a minireview. Endocr Regul. 2005;39:97-105.
Rhodes CH, Morrell JI, Pfaff DW. Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J Comp Neurol. 1981;198:45-64.
Chee MJ, Pissios P, Maratos-Flier E. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp Neurol. 2013;521:2208-2234.
Yao Y, Fu LY, Zhang X, van den Pol AN. Vasopressin and oxytocin excite MCH neurons, but not other lateral hypothalamic GABA neurons. Am J Physiol Regul Integr Comp Physiol. 2012;302:R815-R824.
Uenoyama Y, Inoue N, Pheng V, et al. Ultrastructural evidence of kisspeptin-gonadotrophin-releasing hormone (GnRH) interaction in the median eminence of female rats: implication of axo-axonal regulation of GnRH release. J Neuroendocrinol. 2011;23:863-870.
Matsuyama S, Ohkura S, Mogi K, et al. Morphological evidence for direct interaction between kisspeptin and gonadotropin-releasing hormone neurons at the median eminence of the male goat: an immunoelectron microscopic study. Neuroendocrinology. 2011;94:323-332.
Fuxe K, Agnati LF, Andersson K, et al. The external layer of the median eminence and the paraventricular hypothalamic nucleus represent two important levels of integration in the neuroendocrine regulation. Studies on peptide-catecholamine interactions give evidence for the existance of “medianosomes”. In: del PE, Flückiger E, eds. Dopamine and Neuroendocrine Active Substances, First Symposium of the European Neuroendocrine Association (ENEA 1984). New York, NY: Academic Press; 1985:11-18.
Fuxe K, Andersson K, Harfstrand A, et al. Medianosomes as integrative units in the external layer of the median eminence. Studies on grf/catecholamine and somatostatin/catecholamine interactions in the hypothalamus of the male rat. Neurochem Int. 1986;9:155-170.
Fuxe K, Dahlstrom A, Hoistad M, et al. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev. 2007;55:17-54.
Naufahu J, Alzaid F, Fiuza Brito M, et al. Melanin concentrating hormone in peripheral circulation in the human. J Endocrinol. 2017;232:513-523.
Stricker-Krongrad A, Dimitrov T, Beck B. Central and peripheral dysregulation of melanin-concentrating hormone in obese Zucker rats. Mol Brain Res. 2001;92:43-48.
Bradley RL, Kokkotou EG, Maratos-Flier E, Cheatham B. Melanin-concentrating hormone regulates leptin synthesis and secretion in rat adipocytes. Diabetes. 2000;49:1073-1077.
Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O. Molecular characterization of the melanin-concentrating-hormone receptor. Nature. 1999;400:265-269.
Hill J, Duckworth M, Murdock P, et al. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem. 2001;276:20125-20129.
Parkes DG, Rivest S, Rivier C, Sawchenko PE, Vale W. Melanin-concentrating hormone (MCH) and neuropeptide-E-I (NEI) activate hypothalamic CRF neurons in concious rats. Soc Neurosci Abstr. 1992;18:120.
Ganong WF. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 2000;27:422-427.
Summy-Long JY, Kadekaro M. Role of circumventricular organs (CVO) in neuroendocrine responses: interactions of CVO and the magnocellular neuroendocrine system in different reproductive states. Clin Exp Pharmacol Physiol. 2001;28:590-601.
Sawchenko PE, Arias C, Bittencourt JC. Inhibin beta, somatostatin, and enkephalin immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol. 1990;291:269-280.
Leng G, Meddle SL, Douglas AJ. Oxytocin and the maternal brain. Curr Opin Pharmacol. 2008;8:731-734.
Neumann ID. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol. 2008;20:858-865.
Lee HJ, Macbeth AH, Pagani JH, Young WS 3rd. Oxytocin: the great facilitator of life. Prog Neurobiol. 2009;88:127-151.
Polenov AL, Chetverukhin VK. Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus. II. Types of neuronal cells produced. Cell Tissue Res. 1993;271:351-362.
Contributed Indexing:
Keywords: hypothalamus; maternal behaviour; medial preoptic area; neuroplasticity; oxytocin
Substance Nomenclature:
0 (Hypothalamic Hormones)
0 (Melanins)
0 (Pituitary Hormones)
0 (Pmch protein, rat)
0 (Protein Precursors)
0 (RNA, Messenger)
50-56-6 (Oxytocin)
67382-96-1 (melanin-concentrating hormone)
Entry Date(s):
Date Created: 20190430 Date Completed: 20201013 Latest Revision: 20201013
Update Code:
20240105
DOI:
10.1111/jne.12723
PMID:
31034718
Czasopismo naukowe
Although the melanin-concentrating hormone (MCH) and its coding mRNA are predominantly found in the tuberal hypothalamus, there is detectable synthesis of MCH in the preoptic hypothalamus exclusively in lactating dams, suggesting a participation of MCH in the alterations that take place after parturition. Also implicated in the dam physiology is oxytocin, a neurohormone released from the posterior pituitary that is necessary for milk ejection. Because the projection fields from oxytocin-immunoreactive (-IR) neurones and the mediobasal preoptic hypothalamus overlap and MCH-IR neurones are found in proximity to oxytocin neurones, we investigated the spatial relationship between MCH and oxytocin fibres. Accordingly, we employed multiple immunohistochemistry labelling for MCH and oxytocin for light and electron microscopy techniques, in addition to i.v. tracer injection combined with in situ hybridisation to identify MCH neurones that project to neurosecretory areas. As described for other strains, lactating Long-Evans dams also display immunoreactivity for MCH in the preoptic hypothalamus on days 12 and 19 of lactation. The appearance of these neurones is contemporaneous with an increase in MCH-IR fibres in both the internal layer of the median eminence and the posterior pituitary. In both regions, MCH- and oxytocin-IR fibres were found in great proximity, although there was no evidence for synaptic interaction between these two populations at the ultrastructural level. The tracer injection revealed that only mediobasal preoptic MCH neurones project to the posterior pituitary, suggesting a neuroendocrine-modulatory role for this population. When taken together, the results obtained in the present study indicate that neuroplasticity events at the mediobasal preoptic hypothalamus that occur during late lactation may be part of a neuroendocrinology control loop involving both MCH and oxytocin.
(© 2019 British Society for Neuroendocrinology.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies