Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation.

Tytuł:
Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation.
Autorzy:
Denes LT; Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
Riley LA; Department of Physiology and Functional Genomics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
Mijares JR; Department of Physiology and Functional Genomics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
Arboleda JD; Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
McKee K; Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
Esser KA; Department of Physiology and Functional Genomics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .
Wang ET; Department of Molecular Genetics and Microbiology, Center for Neurogenetics, Myology Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .
Źródło:
Skeletal muscle [Skelet Muscle] 2019 Jun 07; Vol. 9 (1), pp. 17. Date of Electronic Publication: 2019 Jun 07.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : BioMed Central Ltd., 2011-
MeSH Terms:
Cell Culture Techniques/*methods
Muscle Fibers, Skeletal/*cytology
Animals ; Cell Differentiation/genetics ; Cell Line ; Gelatin ; Gene Expression Profiling ; Hydrogels ; Mice ; Muscle Development/genetics ; Muscle Fibers, Skeletal/metabolism ; Myoblasts, Skeletal/cytology ; Myoblasts, Skeletal/metabolism ; RNA-Seq ; Surface Properties
References:
Neuron. 2013 May 8;78(3):483-97. (PMID: 23664615)
Biotechnol Bioeng. 2010 Jun 1;106(2):285-94. (PMID: 20148416)
Sci Rep. 2017 Mar 16;7:44570. (PMID: 28300163)
PLoS One. 2016 Aug 11;11(8):e0160839. (PMID: 27513942)
Nat Methods. 2017 Jul;14(7):687-690. (PMID: 28581496)
Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189. (PMID: 27899595)
Nat Biotechnol. 2016 May;34(5):525-7. (PMID: 27043002)
Am J Physiol Cell Physiol. 2016 Aug 1;311(2):C277-83. (PMID: 27335170)
Nature. 1977 Dec 22-29;270(5639):725-7. (PMID: 563524)
Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
Sci Rep. 2016 Jun 28;6:28855. (PMID: 27350122)
J Am Geriatr Soc. 2009 Aug;57(8):1411-9. (PMID: 19682143)
Lab Chip. 2012 Sep 21;12(18):3491-503. (PMID: 22847280)
Med Sci Sports Exerc. 2016 Nov;48(11):2307-2319. (PMID: 27128663)
J Clin Invest. 1990 Nov;86(5):1423-7. (PMID: 2243122)
PLoS One. 2015 Jun 01;10(6):e0127675. (PMID: 26030912)
Tissue Eng Part A. 2012 Dec;18(23-24):2453-65. (PMID: 22963391)
Front Physiol. 2016 May 25;7:187. (PMID: 27252660)
J Biol Chem. 2012 Aug 24;287(35):29753-64. (PMID: 22778265)
Cell. 1983 Apr;32(4):1171-80. (PMID: 6839359)
Am J Physiol. 1994 Jun;266(6 Pt 1):C1795-802. (PMID: 8023908)
In Vitro Cell Dev Biol. 1990 Feb;26(2):201-8. (PMID: 2312504)
J Cell Biol. 2004 Sep 13;166(6):877-87. (PMID: 15364962)
In Vitro Cell Dev Biol Anim. 2003 Mar-Apr;39(3-4):163-9. (PMID: 14505430)
Elife. 2019 Feb 21;8:. (PMID: 30789342)
Lab Chip. 2012 Aug 21;12(16):2959-69. (PMID: 22773042)
Acta Biomater. 2010 Jun;6(6):1948-57. (PMID: 20040385)
J Exp Biol. 2002 Aug;205(Pt 15):2143-52. (PMID: 12110647)
Mol Cell Proteomics. 2015 Apr;14(4):841-53. (PMID: 25616865)
Elife. 2017 Aug 11;6:. (PMID: 28826478)
Diabetes. 2006 Jun;55(6):1813-8. (PMID: 16731847)
Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338. (PMID: 30395331)
Respirology. 2016 Aug;21(6):978-9. (PMID: 27374412)
Tissue Eng Part A. 2011 Oct;17(19-20):2543-50. (PMID: 21609183)
Biomaterials. 2009 Feb;30(6):1150-5. (PMID: 19064284)
Nano Lett. 2006 Mar;6(3):537-42. (PMID: 16522058)
Am J Clin Nutr. 2006 Sep;84(3):475-82. (PMID: 16960159)
Nat Protoc. 2015 Oct;10(10):1612-24. (PMID: 26401916)
Dev Dyn. 1993 Jan;196(1):25-36. (PMID: 8334297)
Eur J Histochem. 2004 Jul-Sep;48(3):223-33. (PMID: 15596414)
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3864-3869. (PMID: 29581287)
Grant Information:
DP5 OD017865 United States OD NIH HHS; R01 AR066082 United States AR NIAMS NIH HHS; DP5 OD017865 United States CD ODCDC CDC HHS; F31 AR070625 United States AR NIAMS NIH HHS
Contributed Indexing:
Keywords: C2C12; Hydrogels; Micromolding; Myotubes; RNAseq; Sarcomere
Substance Nomenclature:
0 (Hydrogels)
9000-70-8 (Gelatin)
Entry Date(s):
Date Created: 20190609 Date Completed: 20200504 Latest Revision: 20200907
Update Code:
20240104
PubMed Central ID:
PMC6555731
DOI:
10.1186/s13395-019-0203-4
PMID:
31174599
Czasopismo naukowe
Background: Skeletal muscle contributes to roughly 40% of lean body mass, and its loss contributes to morbidity and mortality in a variety of pathogenic conditions. Significant insights into muscle function have been made using cultured cells, in particular, the C2C12 myoblast line. However, differentiation of these cells in vitro typically yields immature myotubes relative to skeletal muscles in vivo. While many efforts have attempted to improve the maturity of cultured myotubes, including the use of bioengineered substrates, lack of molecular characterization has precluded their widespread implementation. This study characterizes morphological, molecular, and transcriptional features of C2C12 myotubes cultured on crosslinked, micropatterned gelatin substrates fabricated using previously established methods and compares them to myotubes grown on unpatterned gelatin or traditional plasticware.
Methods: We used immunocytochemistry, SDS-PAGE, and RNAseq to characterize C2C12 myotubes grown on micropatterned gelatin hydrogels, unpatterned gelatin hydrogels, and typical cell culture substrates (i.e., plastic or collagen-coated glass) across a differentiation time course. The ability to form aligned sarcomeres and myofilament protein concentration was assessed. Additionally, the transcriptome was analyzed across the differentiation time course.
Results: C2C12 myotubes grown on micropatterned gelatin hydrogels display an increased ability to form aligned sarcomeres as well as increased contractile protein content relative to myotubes cultured on unpatterned gelatin and plastic. Additionally, genes related to sarcomere formation and in vivo muscle maturation are upregulated in myotubes grown on micropatterned gelatin hydrogels relative to control myotubes.
Conclusions: Our results suggest that growing C2C12 myotubes on micropatterned gelatin hydrogels accelerates sarcomere formation and yields a more fully matured myotube culture. Thus, the use of micropatterned hydrogels is a viable and simple approach to better model skeletal muscle biology in vitro.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies