Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

In silico analysis of missense mutations in exons 1-5 of the F9 gene that cause hemophilia B.

Tytuł:
In silico analysis of missense mutations in exons 1-5 of the F9 gene that cause hemophilia B.
Autorzy:
Meléndez-Aranda L; Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P, 44340, Guadalajara, Jalisco, México.; División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Jalisco, C.P, 44340, Guadalajara, Mexico.
Jaloma-Cruz AR; División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Jalisco, C.P, 44340, Guadalajara, Mexico.
Pastor N; Centro de Investigación en Dinámica Celular, CIDC, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
Romero-Prado MMJ; Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C.P, 44340, Guadalajara, Jalisco, México. .
Źródło:
BMC bioinformatics [BMC Bioinformatics] 2019 Jun 28; Vol. 20 (1), pp. 363. Date of Electronic Publication: 2019 Jun 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: [London] : BioMed Central, 2000-
MeSH Terms:
Computer Simulation*
Mutation, Missense*
Computational Biology/*methods
Exons/*genetics
Factor IX/*genetics
Hemophilia B/*genetics
Algorithms ; Genotype ; Humans ; Phenotype
References:
Crit Rev Eukaryot Gene Expr. 1999;9(1):59-88. (PMID: 10200912)
Nucleic Acids Res. 2001 Jan 1;29(1):308-11. (PMID: 11125122)
J Biol Chem. 2002 Feb 22;277(8):5725-33. (PMID: 11726655)
Semin Hematol. 2001 Oct;38(4 Suppl 12):6-9. (PMID: 11735103)
J Biol Chem. 2002 Jul 12;277(28):25393-9. (PMID: 11960977)
Thromb Haemost. 2002 Jul;88(1):74-82. (PMID: 12152682)
Pharmacogenomics J. 2003;3(2):77-96. (PMID: 12746733)
Blood Rev. 2003 Sep;17 Suppl 1:S1-5. (PMID: 14697207)
Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15398-403. (PMID: 15492219)
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32. (PMID: 17483518)
Haemophilia. 2008 Sep;14(5):1076-81. (PMID: 18540896)
Protein Eng. 1991 Feb;4(3):319-23. (PMID: 1857716)
Nat Protoc. 2009;4(7):1073-81. (PMID: 19561590)
J Thromb Haemost. 2009 Jul;7 Suppl 1:132-5. (PMID: 19630785)
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):645-50. (PMID: 20080729)
Nat Methods. 2010 Apr;7(4):248-9. (PMID: 20354512)
Nat Protoc. 2010 Apr;5(4):725-38. (PMID: 20360767)
Am J Hum Genet. 2011 Apr 8;88(4):440-9. (PMID: 21457909)
Nucleic Acids Res. 2011 Sep 1;39(17):e118. (PMID: 21727090)
Nat Methods. 2011 Sep 29;8(10):785-6. (PMID: 21959131)
J Membr Biol. 1990 May;115(3):195-201. (PMID: 2197415)
Haemophilia. 2012 Nov;18(6):933-40. (PMID: 22639855)
PLoS One. 2012;7(10):e46688. (PMID: 23056405)
Thromb Haemost. 2013 Jan;109(1):24-33. (PMID: 23093250)
J Thromb Haemost. 2013 Jul;11(7):1329-40. (PMID: 23617593)
BMC Genomics. 2013;14 Suppl 3:S2. (PMID: 23819846)
EMBO J. 1990 Feb;9(2):475-80. (PMID: 2406129)
PLoS Comput Biol. 2014 Jan;10(1):e1003440. (PMID: 24453961)
Eur J Hum Genet. 2015 Jan;23(1):79-85. (PMID: 24667783)
J Thromb Haemost. 2014 Nov;12(11):1935-9. (PMID: 25059285)
Genome Biol. 2014 Oct 28;15(10):484. (PMID: 25348012)
Nat Methods. 2015 Jan;12(1):7-8. (PMID: 25549265)
PLoS One. 2015 Feb 03;10(2):e0117380. (PMID: 25647319)
BMC Med Genet. 2015 May 13;16:34. (PMID: 25967940)
BMC Genomics. 2015;16 Suppl 8:S1. (PMID: 26110438)
Nat Protoc. 2016 Jan;11(1):1-9. (PMID: 26633127)
Haemophilia. 2016 May;22(3):381-8. (PMID: 26823276)
Acta Crystallogr F Struct Biol Commun. 2016 Feb;72(Pt 2):72-95. (PMID: 26841758)
Sci Rep. 2016 Aug 26;6:31865. (PMID: 27561554)
Proc Natl Acad Sci U S A. 1989 Sep;86(18):6893-7. (PMID: 2780546)
Nature. 2016 Nov 30;540(7631):45-46. (PMID: 27905422)
Br J Haematol. 2017 Nov;179(3):363-376. (PMID: 28612396)
Orphanet J Rare Dis. 2017 Jul 4;12(1):125. (PMID: 28676128)
Biochemistry. 1985 Jul 2;24(14):3736-50. (PMID: 2994716)
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. (PMID: 30395287)
J Thromb Haemost. 2019 Apr;17(4):574-584. (PMID: 30725510)
J Biol Chem. 1987 Nov 5;262(31):14895-8. (PMID: 3667614)
Cell. 1987 Jan 30;48(2):185-91. (PMID: 3802193)
Proc Natl Acad Sci U S A. 1985 Sep;82(18):6109-13. (PMID: 3875856)
EMBO J. 1984 May;3(5):1053-60. (PMID: 6329734)
Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9796-800. (PMID: 7568220)
Cell. 1995 Jul 14;82(1):131-41. (PMID: 7606779)
J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
J Clin Invest. 1996 Oct 1;98(7):1619-25. (PMID: 8833911)
J Clin Invest. 1997 Aug 15;100(4):886-92. (PMID: 9259588)
Grant Information:
574098 Consejo Nacional de Ciencia y Tecnología
Contributed Indexing:
Keywords: F9 exons 1–5; Genotype-phenotype correlation; Hemophilia B; In silico analysis
Substance Nomenclature:
9001-28-9 (Factor IX)
Entry Date(s):
Date Created: 20190630 Date Completed: 20190828 Latest Revision: 20200225
Update Code:
20240104
PubMed Central ID:
PMC6599346
DOI:
10.1186/s12859-019-2919-x
PMID:
31253089
Czasopismo naukowe
Background: Missense mutations in the first five exons of F9, which encodes factor FIX, represent 40% of all mutations that cause hemophilia B. To address the ongoing debate regarding in silico identification of disease-causing mutations at these exons, we analyzed 215 missense mutations from www.factorix.org using six in silico prediction tools, which are the most common used programs for analysis prediction of impact of mutations on the protein structure and function, with further advantage of using similar approaches. We developed different algorithms to integrate multiple predictions from such tools. In order to approach a structural analysis on FIX we performed a modeling of five selected pathogenic mutations.
Results: SIFT, PolyPhen-2 HumDiv, SNAP2, and MutationAssessor were the most successful in identifying true non-causative and causative mutations. A proposed function integrating these algorithms (wgP4) was the most sensitive (90.1%), specific (22.6%), and accurate (87%) than similar functions, and identified 187 variants as deleterious. Clinical phenotype was significantly associated with predicted causative mutations at all five exons. However, PolyPhen-2 HumDiv was more successful in linking clinical severity to specific exons, while functions that integrate 4-6 predictions were more successful in linking phenotype to genotypes at the light chain (exons 3-5). The most important value of integrating multiple predictions is the inclusion of scores derived from different approaches. Modeling of protein structure showed the effects of pathogenic nsSNPs on structure and function of FIX.
Conclusions: A simple function that integrates information from different in silico programs yields the best prediction of mutated phenotypes. However, the specificity, sensitivity, and accuracy of genotype-phenotype predictions depend on specific characteristics of the protein domain and the disease of interest as we validated by the structural analysis of selected pathogenic F9 mutations. The proposed function integrating algorithm (wgP4) might be useful for the analysis of nsSNPs impact on other genes.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies