Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Adlayer-Free Large-Area Single Crystal Graphene Grown on a Cu(111) Foil.

Tytuł:
Adlayer-Free Large-Area Single Crystal Graphene Grown on a Cu(111) Foil.
Autorzy:
Luo D; Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
Wang M; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Li Y; School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Kim C; SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University (SKKU), Gyeonggi-do, 16419, Republic of Korea.
Yu KM; Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Kim Y; School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Han H; School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Biswal M; Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
Huang M; Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
Kwon Y; Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
Goo M; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Camacho-Mojica DC; Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
Shi H; Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
Yoo WJ; SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University (SKKU), Gyeonggi-do, 16419, Republic of Korea.
Altman MS; Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Shin HJ; Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.; School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Ruoff RS; Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.; School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Źródło:
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2019 Aug; Vol. 31 (35), pp. e1903615. Date of Electronic Publication: 2019 Jul 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
References:
a) X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4359;.
b) X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.
R. Ma, Q. Huan, L. Wu, J. Yan, W. Guo, Y.-Y. Zhang, S. Wang, L. Bao, Y. Liu, S. Du, S. T. Pantelides, H.-J. Gao, Nano Lett. 2017, 17, 5291.
A. Y. Serov, Z.-Y. Ong, E. Pop, Appl. Phys. Lett. 2013, 102, 033104.
J. Zhang, J. Zhao, J. Lu, ACS Nano 2012, 6, 2704.
a) V. L. Nguyen, D. J. Perello, S. Lee, C. T. Nai, B. G. Shin, J.-G. Kim, H. Y. Park, H. Y. Jeong, J. Zhao, Q. A. Vu, S. H. Lee, K. P. Loh, S.-Y. Jeong, Y. H. Lee, Adv. Mater. 2016, 28, 8177;.
b) Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 2018, 556, 43;.
c) B. Wang, B. V. Cunning, N. Y. Kim, F. Kargar, S.-Y. Park, Z. Li, S. R. Joshi, L. Peng, V. Modepalli, X. Chen, Y. Shen, W. K. Seong, Y. Kwon, J. Jang, H. Shi, C. Gao, G.-H. Kim, T. J. Shin, K. Kim, J.-Y. Kim, A. A. Balandin, Z. Lee, R. S. Ruoff, Adv. Mater. 2019, 1903039.
X. Li, W. Cai, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4268.
a) B. Wang, M. Huang, L. Tao, S. H. Lee, A. R. Jang, B.-W. Li, H. S. Shin, D. Akinwande, R. S. Ruoff, ACS Nano 2016, 10, 1404;.
b) D. Luo, X. You, B.-W. Li, X. Chen, H. J. Park, M. Jung, T. Y. Ko, K. Wong, M. Yousaf, X. Chen, M. Huang, S. H. Lee, Z. Lee, H.-J. Shin, S. Ryu, S. K. Kwak, N. Park, R. R. Bacsa, W. Bacsa, R. S. Ruoff, Chem. Mater. 2017, 29, 4546;.
c) S. Bhaviripudi, X. Jia, M. S. Dresselhaus, J. Kong, Nano Lett. 2010, 10, 4128.
a) Z. Han, A. Kimouche, D. Kalita, A. Allain, H. Arjmandi-Tash, A. Reserbat-Plantey, L. Marty, S. Pairis, V. Reita, N. Bendiab, J. Coraux, V. Bouchiat, Adv. Funct. Mater. 2014, 24, 964;.
b) K. Lee, J. Ye, Carbon 2016, 100, 441;.
c) Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith, A. T. C. Johnson, Chem. Mater. 2011, 23, 1441;.
d) J. Pang, A. Bachmatiuk, L. Fu, C. Yan, M. Zeng, J. Wang, B. Trzebicka, T. Gemming, J. Eckert, M. H. Rummeli, J. Phys. Chem. C 2015, 119, 13363;.
e) G. H. Han, F. Güneş, J. J. Bae, E. S. Kim, S. J. Chae, H.-J. Shin, J.-Y. Choi, D. Pribat, Y. H. Lee, Nano Lett. 2011, 11, 4144;.
f) J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, J. W. Lyding, Nano Lett. 2011, 11, 4547.
W. Zhang, P. Wu, Z. Li, J. Yang, J. Phys. Chem. C 2011, 115, 17782.
I. H. Abidi, Y. Liu, J. Pan, A. Tyagi, M. Zhuang, Q. Zhang, A. A. Cagang, L. T. Weng, P. Sheng, W. A. Goddard III, Z. Luo, Adv. Funct. Mater. 2017, 27, 1700121.
a) W. Guo, B. Wu, S. Wang, Y. Liu, ACS Nano 2018, 12, 1778;.
b) T. Ma, W. Ren, Z. Liu, L. Huang, L.-P. Ma, X. Ma, Z. Zhang, L.-M. Peng, H.-M. Cheng, ACS Nano 2014, 8, 12806;.
c) S. Chen, H. Ji, H. Chou, Q. Li, H. Li, J. W. Suk, R. Piner, L. Liao, W. Cai, R. S. Ruoff, Adv. Mater. 2013, 25, 2062;.
d) H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, X. Duan, Nat. Commun. 2013, 4, 2096;.
e) I. V. Vlassiouk, Y. Stehle, P. R. Pudasaini, R. R. Unocic, P. D. Rack, A. P. Baddorf, I. N. Ivanov, N. V. Lavrik, F. List, N. Gupta, K. V. Bets, B. I. Yakobson, S. N. Smirnov, Nat. Mater. 2018, 17, 318;.
f) T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, M. Jiang, Nat. Mater. 2016, 15, 43;.
g) Y. Hao, L. Wang, Y. Liu, H. Chen, X. Wang, C. Tan, S. Nie, J. W. Suk, T. Jiang, T. Liang, J. Xiao, W. Ye, C. R. Dean, B. I. Yakobson, K. F. McCarty, P. Kim, J. Hone, L. Colombo, R. S. Ruoff, Nat. Nanotechnol. 2016, 11, 426;.
h) X. Xu, Z. Zhang, L. Qiu, J. Zhuang, L. Zhang, H. Wang, C. Liao, H. Song, R. Qiao, P. Gao, Z. Hu, L. Liao, Z. Liao, D. Yu, E. Wang, F. Ding, H. Peng, K. Liu, Nat. Nanotechnol. 2016, 11, 930;.
i) Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo, R. S. Ruoff, Science 2013, 342, 720.
a) P. W. Sutter, J.-I. Flege, E. A. Sutter, Nat. Mater. 2008, 7, 406;.
b) J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.-W. Hwang, D. Whang, Science 2014, 344, 286;.
c) L. Brown, E. B. Lochocki, J. Avila, C.-J. Kim, Y. Ogawa, R. W. Havener, D.-K. Kim, E. J. Monkman, D. E. Shai, H. I. Wei, M. P. Levendorf, M. Asensio, K. M. Shen, J. Park, Nano Lett. 2014, 14, 5706;.
d) N. V. Luan, S. B. Gyu, D. D. Loc, K. S. Tae, P. David, L. Y. Jin, Y. Q. Hong, D. Feng, J. H. Young, S. H. Suk, L. S. Mi, C. S. Hoon, V. Q. An, L. S. Hee, L. Y. Hee, Adv. Mater. 2015, 27, 1376;.
e) H. Ago, Y. Ohta, H. Hibino, D. Yoshimura, R. Takizawa, Y. Uchida, M. Tsuji, T. Okajima, H. Mitani, S. Mizuno, Chem. Mater. 2015, 27, 5377;.
f) X. Xu, Z. Zhang, J. Dong, D. Yi, J. Niu, M. Wu, L. Lin, R. Yin, M. Li, J. Zhou, S. Wang, J. Sun, X. Duan, P. Gao, Y. Jiang, X. Wu, H. Peng, R. S. Ruoff, Z. Liu, D. Yu, E. Wang, F. Ding, K. Liu, Sci. Bull. 2017, 62, 1074;.
g) B. W. Li, D. Luo, L. Zhu, X. Zhang, S. Jin, M. Huang, F. Ding, R. S. Ruoff, Adv. Mater. 2018, 30, 1706504;.
h) B. Deng, Z. Pang, S. Chen, X. Li, C. Meng, J. Li, M. Liu, J. Wu, Y. Qi, W. Dang, H. Yang, Y. Zhang, J. Zhang, N. Kang, H. Xu, Q. Fu, X. Qiu, P. Gao, Y. Wei, Z. Liu, H. Peng, ACS Nano 2017, 11, 12337;.
i) M. Huang, M. Biswal, H. J. Park, S. Jin, D. Qu, S. Hong, Z. Zhu, L. Qiu, D. Luo, X. Liu, Z. Yang, Z. Liu, Y. Huang, H. Lim, W. J. Yoo, F. Ding, Y. Wang, Z. Lee, R. S. Ruoff, ACS Nano 2018, 12, 6117.
J. B. Mullin, Electronic Materials: From Silicon to Organics (Eds: L. S. Miller, J. B. Mullin), Springer, Boston, MA 1991, pp. 127-142.
S. Jin, M. Huang, Y. Kwon, L. Zhang, B.-W. Li, S. Oh, J. Dong, D. Luo, M. Biswal, B. V. Cunning, P. V. Bakharev, I. Moon, W. J. Yoo, D. C. Camacho-Mojica, Y.-J. Kim, S. H. Lee, B. Wang, W. K. Seong, M. Saxena, F. Ding, H.-J. Shin, R. S. Ruoff, Science 2018, 362, 1021.
Q. Li, H. Chou, J.-H. Zhong, J.-Y. Liu, A. Dolocan, J. Zhang, Y. Zhou, R. S. Ruoff, S. Chen, W. Cai, Nano Lett. 2013, 13, 486.
a) H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, E. Saiz, ACS Nano 2012, 6, 3614;.
b) W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Carbon 2011, 49, 4122;.
c) P. Ghosh, S. Kumar, G. Ramalingam, V. Kochat, M. Radhakrishnan, S. Dhar, S. Suwas, A. Ghosh, N. Ravishankar, S. Raghavan, J. Phys. Chem. C 2015, 119, 2513.
A. C. Ferrari, D. M. Basko, Nat. Nanotechnol. 2013, 8, 235.
a) Y. Wu, H. Chou, H. Ji, Q. Wu, S. Chen, W. Jiang, Y. Hao, J. Kang, Y. Ren, R. D. Piner, R. S. Ruoff, ACS Nano 2012, 6, 7731;.
b) A. C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Phys. Rev. Lett. 2006, 97, 187401;.
c) L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Phys. Rep. 2009, 473, 51.
K. Kim, S. Coh, L. Z. Tan, W. Regan, J. M. Yuk, E. Chatterjee, M. Crommie, M. L. Cohen, S. G. Louie, A. Zettl, Phys. Rev. Lett. 2012, 108, 246103.
X. Sun, L. Lin, L. Sun, J. Zhang, D. Rui, J. Li, M. Wang, C. Tan, N. Kang, D. Wei, H. Q. Xu, H. Peng, Z. Liu, Small 2018, 14, 1702916.
S. Nie, W. Wu, S. Xing, Q. Yu, J. Bao, S.-s. Pei, K. F. McCarty, New J. Phys. 2012, 14, 093028.
a) F. Mangolini, J. B. McClimon, F. Rose, R. W. Carpick, Anal. Chem. 2014, 86, 12258;.
b) A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li, Carbon 2014, 74, 218;.
c) H. Piao, N. S. Mcintyre, Surf. Interface Anal. 2002, 33, 591.
X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, R. S. Ruoff, Nano Lett. 2010, 10, 4328.
I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, ACS Nano 2011, 5, 6069.
C. Shen, X. Yan, F. Qing, X. Niu, R. Stehle, S. S. Mao, W. Zhang, X. Li, J. Materiomics 2019, https://doi.org/10.1016/j.jmat.2019.01.009.
M. H. Khaksaran, I. I. Kaya, ACS Omega 2018, 3, 12575.
T. Niu, M. Zhou, J. Zhang, Y. Feng, W. Chen, J. Am. Chem. Soc. 2013, 135, 8409.
P. Verma, Chem. Rev. 2017, 117, 6447.
G. López, E. Mittemeijer, Scr. Mater. 2004, 51, 1.
T. L. Barr, S. Seal, J. Vac. Sci. Technol., A 1995, 13, 1239.
M. Iwaki, Surf. Coat. Technol. 2002, 158-159, 377.
Private conversation with Dr. Ruolin Zhu of Jiangxi Copper Corporation Limited, one of the largest manufactures of copper foils in the world.
K. L. Man, M. S. Altman, Phys. Rev. B 2011, 84, 235415.
P. Yi, Z. Haigang, S. Dongxia, S. Jiatao, D. Shixuan, L. Feng, G. Hong-jun, Adv. Mater. 2009, 21, 2777.
C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, C. Stampfer, Nat. Commun. 2015, 6, 8429.
a) B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K.-i. Ikeda, S. Mizuno, Carbon 2012, 50, 57;.
b) P. Süle, M. Szendrő, C. Hwang, L. Tapasztó, Carbon 2014, 77, 1082;.
c) L. Gao, J. R. Guest, N. P. Guisinger, Nano Lett. 2010, 10, 3512.
D. W. Kim, Y. H. Kim, H. S. Jeong, H.-T. Jung, Nat. Nanotechnol. 2012, 7, 29.
W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Tersoff, P. Avouris, Nano Lett. 2012, 12, 3431.
Y. Wang, Z. Ni, Z. Shen, H. Wang, Y. Wu, Appl. Phys. Lett. 2008, 92, 043121.
S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S. K. Banerjee, Appl. Phys. Lett. 2009, 94, 062107.
Z. Chen, J. Appenzeller, IEEE IEDM Tech. Digest 2008, 21.1, 509.
A. Venugopal, J. Chan, X. Li, C. W. Magnuson, W. P. Kirk, L. Colombo, R. S. Ruoff, E. M. Vogel, J. Appl. Phys. 2011, 109, 104511.
X. Xu, Z. Zhang, L. Qiu, J. Zhuang, L. Zhang, H. Wang, C. Liao, H. Song, R. Qiao, P. Gao, Nat. Nanotechnol. 2016, 11, 930.
Y. Ogawa, K. Komatsu, K. Kawahara, M. Tsuji, K. Tsukagoshi, H. Ago, Nanoscale 2014, 6, 7288.
S.-H. Bae, X. Zhou, S. Kim, Y. S. Lee, S. S. Cruz, Y. Kim, J. B. Hannon, Y. Yang, D. K. Sadana, F. M. Ross, Proc. Natl. Acad. Sci. USA 2017, 114, 4082.
a) D. Rainis, F. Taddei, M. Polini, G. León, F. Guinea, V. I. Fal'ko, Phys. Rev. B 2011, 83, 165403;.
b) E. Prada, P. San-Jose, L. Brey, Phys. Rev. Lett. 2010, 105, 106802.
C. Ma, X. Sun, H. Du, J. Wang, M. Tian, A. Zhao, Y. Yamauchi, B. Wang, Nano Lett. 2018, 18, 6710.
F. Guinea, M. I. Katsnelson, A. K. Geim, Nat. Phys. 2010, 6, 30.
K. Kim, Z. Lee, B. D. Malone, K. T. Chan, B. Alemán, W. Regan, W. Gannett, M. F. Crommie, M. L. Cohen, A. Zettl, Phys. Rev. B 2011, 83, 245433.
Grant Information:
R019-D1 IBS; 1.180066.01 UNIST; 2016K1A1A2912707 National Research Foundation of Korea; 600113 Research Grants Council, University Grants Committee; 600113 Hong Kong Research Grants Council
Contributed Indexing:
Keywords: Cu(111); adlayer-free; chemical vapor deposition (CVD); folds; single crystal graphene
Entry Date(s):
Date Created: 20190703 Latest Revision: 20200930
Update Code:
20240104
DOI:
10.1002/adma.201903615
PMID:
31264306
Czasopismo naukowe
To date, thousands of publications have reported chemical vapor deposition growth of "single layer" graphene, but none of them has described truly single layer graphene over large area because a fraction of the area has adlayers. It is found that the amount of subsurface carbon (leading to additional nuclei) in Cu foils directly correlates with the extent of adlayer growth. Annealing in hydrogen gas atmosphere depletes the subsurface carbon in the Cu foil. Adlayer-free single crystal and polycrystalline single layer graphene films are grown on Cu(111) and polycrystalline Cu foils containing no subsurface carbon, respectively. This single crystal graphene contains parallel, centimeter-long ≈100 nm wide "folds," separated by 20 to 50 µm, while folds (and wrinkles) are distributed quasi-randomly in the polycrystalline graphene film. High-performance field-effect transistors are readily fabricated in the large regions between adjacent parallel folds in the adlayer-free single crystal graphene film.
(© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies