Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Designed One-Pot Strategy for Dual-Carbon-Protected Na 3 V 2 (PO 4 ) 3 Hybrid Structure as High-Rate and Ultrastable Cathode for Sodium-Ion Batteries.

Tytuł:
Designed One-Pot Strategy for Dual-Carbon-Protected Na 3 V 2 (PO 4 ) 3 Hybrid Structure as High-Rate and Ultrastable Cathode for Sodium-Ion Batteries.
Autorzy:
Li J; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Peng B; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Li Y; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Yu L; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Wang G; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Shi L; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Zhang G; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Źródło:
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2019 Oct 11; Vol. 25 (57), pp. 13094-13098. Date of Electronic Publication: 2019 Sep 17.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH
References:
D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431-3448;.
Angew. Chem. 2015, 127, 3495-3513.
M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947-958.
C. Zhou, S. Bag, V. Thangadurai, ACS Energy Lett. 2018, 3, 2181-2198.
Y. Liang, W. H. Lai, Z. Miao, S. L. Chou, Small 2018, 14, 1702514.
Y. Kim, Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh, K. T. Lee, Adv. Mater. 2013, 25, 3045-3049.
J. Ni, X. Bi, Y. Jiang, L. Li, J. Lu, Nano Energy 2017, 34, 356-366.
S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710-721.
R. Qin, Y. Wei, T. Zhai, H. Li, J. Mater. Chem. A 2018, 6, 9737-9746.
Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033.
J. Ni, L. Li, Adv. Funct. Mater. 2018, 28, 1704880.
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Adv. Mater. 2017, 29, 1700431.
X. Li, J. Ni, S. V. Savilov, L. Li, Chem. Eur. J. 2018, 24, 13719-13727.
X. Xiang, K. Zhang, J. Chen, Adv. Mater. 2015, 27, 5343-5364.
Y. Huang, Y. Zheng, X. Li, F. Adams, W. Luo, Y. Huang, L. Hu, ACS Energy Lett. 2018, 3, 1604-1612.
Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V. Saraf, Z. Yang, J. Liu, Adv. Mater. 2011, 23, 3155-3160.
P.-F. Wang, Y.-J. Guo, H. Duan, T.-T. Zuo, E. Hu, K. Attenkofer, H. Li, X. S. Zhao, Y.-X. Yin, X. Yu, Y.-G. Guo, ACS Energy Lett. 2017, 2, 2715-2722.
Q. Ni, Y. Bai, F. Wu, C. Wu, Adv. Sci. 2017, 4, 1600275.
P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher, Chem. Mater. 2010, 22, 4126-4128.
Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun, Y. Lu, M. Yan, B. Song, S. Dou, Adv. Funct. Mater. 2016, 26, 5315-5321.
K. Kretschmer, B. Sun, J. Zhang, X. Xie, H. Liu, G. Wang, Small 2017, 13, 1603318.
K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong, P. Balaya, Adv. Energy Mater. 2013, 3, 444-450.
Y. Jiang, H. Zhang, H. Yang, Z. Qi, Y. Yu, Nanoscale 2017, 9, 6048-6055.
W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen, J. Mater. Chem. A 2014, 2, 8668-8675.
S. Tao, X. Wang, P. Cui, Y. Wang, Y. A. Haleem, S. Wei, W. Huang, L. Song, W. Chu, RSC Adv. 2016, 6, 43591-43597.
S. Li, Y. Dong, L. Xu, X. Xu, L. He, L. Mai, Adv. Mater. 2014, 26, 3545-3553.
S. Y. Lim, H. Kim, R. A. Shakoor, Y. Jung, J. W. Choi, J. Electrochem. Soc. 2012, 159, A1393-A1397.
G. Li, D. Jiang, H. Wang, X. Lan, H. Zhong, Y. Jiang, J. Power Sources 2014, 265, 325-334.
Q. Zhang, W. Wang, Y. Wang, P. Feng, K. Wang, S. Cheng, K. Jiang, Nano Energy 2016, 20, 11-19.
Y. Zhang, H. Zhao, Y. Du, J. Mater. Chem. A 2016, 4, 7155-7159.
Z. Jian, Y. S. Hu, X. Ji, W. Chen, Adv. Mater. 2017, 29, 1601925.
Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, Adv. Energy Mater. 2017, 7, 1701336.
F. Li, Y.-E. Zhu, J. Sheng, L. Yang, Y. Zhang, Z. Zhou, J. Mater. Chem. A 2017, 5, 25276-25281.
X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji, J. Y. Lee, J. Mater. Chem. A 2016, 4, 14669-14674.
H. Li, H. Tang, C. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S. P. Ong, F. Wua, Y. S. Meng, C. Wu, Chem. Mater. 2018, 30, 2498-2505.
X. Li, Y. Huang, J. Wang, L. Miao, Y. Li, Y. Liu, Y. Qiu, C. Fang, J. Han, Y. Huang, J. Mater. Chem. A 2018, 6, 1390-1396.
W. Shen, C. Wang, Q. Xu, H. Liu, Y. Wang, Adv. Energy Mater. 2015, 5, 1400982.
Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu, Y. Yu, Adv. Energy Mater. 2018, 8, 1800068.
Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Adv. Mater. 2015, 27, 5895-5900.
J. Yang, H. Wang, P. Hu, J. Qi, L. Guo, L. Wang, Small 2015, 11, 3744-3749.
X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, Adv. Mater. 2015, 27, 6670-6676.
J. Yang, D.-W. Han, M. R. Jo, K. Song, Y.-I. Kim, S.-L. Chou, H.-K. Liu, Y.-M. Kang, J. Mater. Chem. A 2015, 3, 1005-1009.
H. Kim, H. Lim, H.-S. Kim, K. J. Kim, D. Byun, W. Choi, Nano Res. 2019, 12, 397-404.
C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng, L. Huang, L. Zhou, G. Zhang, L. He, L. Mai, Nano Energy 2016, 28, 224-231.
Y. Huang, X. Li, J. Wang, L. Miao, C. Li, J. Han, Y. Huang, Energy Storage Mater. 2018, 15, 108-115.
Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan, M. Wang, X. Wei, G. Hu, L. Gu, Y. Yu, Adv. Energy Mater. 2015, 5, 1402104.
P. N. Didwal, R. Verma, C.-W. Min, C.-J. Park, J. Power Sources 2019, 413, 1-10.
Grant Information:
51772284 National Natural Science Foundation of China
Contributed Indexing:
Keywords: batteries; cathodes; electrochemistry; hybrid systems; sodium-ion battery
Entry Date(s):
Date Created: 20190713 Date Completed: 20191016 Latest Revision: 20200108
Update Code:
20240105
DOI:
10.1002/chem.201902400
PMID:
31298763
Czasopismo naukowe
Sodium-ion batteries have attracted tremendous attention due to their much lower cost and similar working principle compared with lithium-ion batteries, which have been invited great expectation as energy storage devices in grid-level applications. The sodium superionic conductor Na 3 V 2 (PO 4 ) 3 has been considered as a promising cathode candidate; however, its intrinsic low electronic conductivity results in poor rate performance and unsatisfactory cycling performance, which severely impedes its potential for practical applications. Herein, we developed a facile one-pot strategy to construct dual carbon-protected hybrid structure composed of carbon coated Na 3 V 2 (PO 4 ) 3 nanoparticles embedded with carbon matrix with excellent rate performance, superior cycling stability and ultralong lifespan. Specifically, it can deliver an outstanding rate performance with a 51.5 % capacity retention from 0.5 to 100 C and extraordinary cycling stability of 80.86 % capacity retention after 6000 cycles at the high rate of 20 C. The possible reasons for the enhanced performance could be understood as the synergistic effects of the strengthened robust structure, facilitated charge transfer kinetics, and the mesoporous nature of the Na 3 V 2 (PO 4 ) 3 hybrid structure. This work provides a cost-effective strategy to effectively optimize the electrochemical performance of a Na 3 V 2 (PO 4 ) 3 cathode, which could contribute to push forward the advance of its practical applications.
(© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies