Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The generation and use of recombinant extracellular vesicles as biological reference material.

Tytuł:
The generation and use of recombinant extracellular vesicles as biological reference material.
Autorzy:
Geeurickx E; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.; Cancer Research Institute Ghent, Ghent, 9000, Belgium.
Tulkens J; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.; Cancer Research Institute Ghent, Ghent, 9000, Belgium.
Dhondt B; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Urology, Ghent University Hospital, Ghent, 9000, Belgium.
Van Deun J; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.; Cancer Research Institute Ghent, Ghent, 9000, Belgium.
Lippens L; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Medical Oncology, Ghent University Hospital, Ghent, 9000, Belgium.
Vergauwen G; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Gynaecology, Ghent University Hospital, Ghent, 9000, Belgium.
Heyrman E; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.
De Sutter D; Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.; VIB Center for Medical Biotechnology, Ghent, 9000, Belgium.
Gevaert K; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.; VIB Center for Medical Biotechnology, Ghent, 9000, Belgium.
Impens F; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.; VIB Center for Medical Biotechnology, Ghent, 9000, Belgium.; VIB Proteomics Core, Ghent, 9000, Belgium.
Miinalainen I; Biocenter Oulu, University of Oulu, Oulu, 90220, Finland.
Van Bockstal PJ; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium.
De Beer T; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium.
Wauben MHM; Department of Biochemistry and Cell Biology, Faculty of Veterinary medicine, Utrecht University, Utrecht, CM, 3584, The Netherlands.
Nolte-'t-Hoen ENM; Department of Biochemistry and Cell Biology, Faculty of Veterinary medicine, Utrecht University, Utrecht, CM, 3584, The Netherlands.
Bloch K; Laboratory of Lipid Metabolism and Cancer, Department of Oncology, University of Leuven, Leuven, 3000, Belgium.
Swinnen JV; Laboratory of Lipid Metabolism and Cancer, Department of Oncology, University of Leuven, Leuven, 3000, Belgium.
van der Pol E; Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Center, Amsterdam University, Amsterdam, AZ, 1105, The Netherlands.; Biomedical Engineering & Physics, Amsterdam University Medical Center, Amsterdam University, Amsterdam, AZ, 1105, The Netherlands.; Vesicle Observation Center, Amsterdam University Medical Center, Amsterdam, AZ, 1105, The Netherlands.
Nieuwland R; Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Center, Amsterdam University, Amsterdam, AZ, 1105, The Netherlands.; Vesicle Observation Center, Amsterdam University Medical Center, Amsterdam, AZ, 1105, The Netherlands.
Braems G; Department of Gynaecology, Ghent University Hospital, Ghent, 9000, Belgium.
Callewaert N; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.; VIB Center for Medical Biotechnology, Ghent, 9000, Belgium.
Mestdagh P; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.; Center of Medical Genetics, Ghent University, Ghent, 9000, Belgium.
Vandesompele J; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.; Center of Medical Genetics, Ghent University, Ghent, 9000, Belgium.
Denys H; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Medical Oncology, Ghent University Hospital, Ghent, 9000, Belgium.
Eyckerman S; Cancer Research Institute Ghent, Ghent, 9000, Belgium.; Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.; VIB Center for Medical Biotechnology, Ghent, 9000, Belgium.
De Wever O; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.; Cancer Research Institute Ghent, Ghent, 9000, Belgium.
Hendrix A; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium. .; Cancer Research Institute Ghent, Ghent, 9000, Belgium. .
Źródło:
Nature communications [Nat Commun] 2019 Jul 23; Vol. 10 (1), pp. 3288. Date of Electronic Publication: 2019 Jul 23.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Reference Standards*
Extracellular Vesicles/*chemistry
Biomarkers ; Biomedical Research/methods ; Culture Media, Conditioned ; HEK293 Cells ; Humans
References:
Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018). (PMID: 10.1038/nrm.2017.125)
Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017). (PMID: 10.1016/j.tcb.2016.11.003)
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest. 126, 1208–1215 (2016). (PMID: 10.1172/JCI81135)
Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017). (PMID: 10.1038/nmeth.4185)
Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018). (PMID: 10.1080/20013078.2018.1535750)
Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013). (PMID: 10.3402/jev.v2i0.20360)
Valkonen, S. et al. Biological reference materials for extracellular vesicle studies. Eur. J. Pharm. Sci. 98, 4–16 (2017). (PMID: 10.1016/j.ejps.2016.09.008)
Van Der Pol, E., Coumans, F. A. W., Sturk, A., Nieuwland, R. & Van Leeuwen, T. G. Refractive index determination of nanoparticles in suspension using nanoparticle tracking analysis. Nano Lett. 14, 6195–6201 (2014). (PMID: 10.1021/nl503371p)
Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W. G. & Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J. of Extracell. Vesicles 2, 19671 (2013).
Varga, Z. et al. Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. J. Thromb. Haemost. 16, 1646–1655 (2018). (PMID: 10.1111/jth.14193)
Lozano-Andrés, E. et al. Tetraspanin-decorated extracellular vesicle-mimetics as a novel adaptable reference material. J. Extracell. Vesicles 8, 1573052 (2019). (PMID: 10.1080/20013078.2019.1573052)
Görgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 8, 1587567 (2019). (PMID: 10.1080/20013078.2019.1587567)
Fujii, K., Hurley, J. H. & Freed, E. O. Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1. Nat. Rev. Microbiol. 5, 912–916 (2007). (PMID: 10.1038/nrmicro1790)
Gould, S. J., Booth, A. M. & Hildreth, J. E. K. The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA. 100, 10592–10597 (2003). (PMID: 10.1073/pnas.1831413100)
Booth, A. M. et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935 (2006). (PMID: 10.1083/jcb.200508014)
Tavernier, J. et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat. Commun. 5, 4767 (2014). (PMID: 10.1038/ncomms5767)
Eyckerman, S. et al. Trapping mammalian protein complexes in viral particles. Nat. Commun. 7, 11416 (2016). (PMID: 10.1038/ncomms11416)
Dettenhofer, M. & Yu, X. F. Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions. J. Virol. 73, 1460–1467 (1999). (PMID: 9882352103971)
Böing, A. N. et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 3, 23430 (2014). (PMID: 10.3402/jev.v3.23430)
Tulkens, J. et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut gutjnl-2018-317726  https://gut.bmj.com/content/early/2018/12/15/gutjnl-2018-317726.info (2018).
Théry, C., Clayton, A., Amigorena, S. & Raposo, G. Isolation and characterization of exosomes from cell culture supernatants. Curr. Protoc. Cell Biol. Ch. 3, Unit 3.22 (2006).
De Wever, O. & Hendrix, A. A supporting ecosystem to mature extracellular vesicles into clinical application. EMBO J. 38, e101412 (2019).
Van Deun, J. et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles  3, 24858 (2014).
Zhao, C., Ao, Z. & Yao, X. Current advances in virus-like particles as a vaccination approach against HIV infection. Vaccines 4, 2 (2016).
Cashikar, A. G. et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. Elife 3, e02184 (2014).
Bieniasz, P. D. Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63 (2006). (PMID: 10.1016/j.virol.2005.09.044)
Jouvenet, N. et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 4, e435 (2006). (PMID: 10.1371/journal.pbio.0040435)
Comas-Garcia, M. et al. Dissection of specific binding of HIV-1 Gag to the ‘packaging signal’ in viral RNA. Elife 6, e27055 (2017).
Rulli, S. J. et al. Selective and nonselective packaging of cellular RNAs in retrovirus particles. J. Virol. 81, 6623–6631 (2007). (PMID: 10.1128/JVI.02833-06)
Campbell, S. & Alan, R. In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J. Virol. 67, 5550–5561 (1999).
Pastuzyn, E. D. et al. The neuronal gene arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172, 275–288.e18 (2018). (PMID: 10.1016/j.cell.2017.12.024)
Chatterjee, D. K., Kaczmarczyk, S. J., Sitaraman, K., Hughes, S. H. & Young, H. A. Protein delivery using engineered virus-like particles. Proc. Natl Acad. Sci. USA 108, 16998–17003 (2011). (PMID: 10.1073/pnas.1101874108)
Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015). (PMID: 10.1038/ncomms8029)
Hardwick, S. A., Deveson, I. W. & Mercer, T. R. Reference standards for next-generation sequencing. Nat. Rev. Genet. 18, 473–484 (2017). (PMID: 10.1038/nrg.2017.44)
Plant, A. L., Locascio, L. E., May, W. E. & Gallagher, P. D. Improved reproducibility by assuring confidence in measurements in biomedical research. Nat. Methods 11, 895–898 (2014). (PMID: 10.1038/nmeth.3076)
Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 13, 82–89 (2018). (PMID: 10.1038/s41565-017-0012-z)
Onódi, Z. et al. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front. Physiol. 9, 1479 (2018). (PMID: 10.3389/fphys.2018.01479)
Simonsen, J. B. What are we looking at? extracellular vesicles, lipoproteins, or both? Circ. Res. 121, 920–922 (2017). (PMID: 10.1161/CIRCRESAHA.117.311767)
De Wever, O. et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016–1018 (2004). (PMID: 10.1096/fj.03-1110fje)
Vergauwen, G. et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci. Rep. 7, 2704 (2017). (PMID: 10.1038/s41598-017-02599-y)
van der Vlist, E. J., Nolte-’t Hoen, E. N. M., Stoorvogel, W., Arkesteijn, G. J. A. & Wauben, M. H. M. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 7, 1311–1326 (2012). (PMID: 10.1038/nprot.2012.065)
Substance Nomenclature:
0 (Biomarkers)
0 (Culture Media, Conditioned)
Entry Date(s):
Date Created: 20190725 Date Completed: 20200204 Latest Revision: 20210113
Update Code:
20240105
PubMed Central ID:
PMC6650486
DOI:
10.1038/s41467-019-11182-0
PMID:
31337761
Czasopismo naukowe
Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological understanding, diagnostics and therapy. However, EV data interpretation remains challenging owing to complexity of biofluids and technical variation introduced during sample preparation and analysis. To understand and mitigate these limitations, we generated trackable recombinant EV (rEV) as a biological reference material. Employing complementary characterization methods, we demonstrate that rEV are stable and bear physical and biochemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluorescence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV in biofluids allows recovery efficiencies of commonly implemented EV separation methods to be identified, intra-method and inter-user variability induced by sample handling to be defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV will aid EV-based sample preparation and analysis, data normalization, method development and instrument calibration in various research and biomedical applications.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies