Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range.

Tytuł:
Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range.
Autorzy:
Biswas S; Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
Noyce RS; Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
Babiuk LA; Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
Lung O; National Centre for Foreign Animal Disease (NCFAD), Canadian Food Inspection Agency, Winnipeg, MB, Canada.
Bulach DM; CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia.
Bowden TR; CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia.
Boyle DB; CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia.
Babiuk S; National Centre for Foreign Animal Disease (NCFAD), Canadian Food Inspection Agency, Winnipeg, MB, Canada.; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
Evans DH; Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
Źródło:
Transboundary and emerging diseases [Transbound Emerg Dis] 2020 Jan; Vol. 67 (1), pp. 80-97. Date of Electronic Publication: 2019 Aug 30.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Blackwell Verlag
MeSH Terms:
Genetic Variation*
Capripoxvirus/*genetics
Genome, Viral/*genetics
Host Specificity/*genetics
Poxviridae Infections/*veterinary
Sheep Diseases/*virology
Africa ; Animals ; Asia ; Biological Evolution ; Capripoxvirus/immunology ; Capripoxvirus/pathogenicity ; Capripoxvirus/physiology ; Cells, Cultured ; Genetic Speciation ; India ; Male ; Middle East ; Mutation ; Poxviridae Infections/prevention & control ; Poxviridae Infections/virology ; Sheep ; Sheep Diseases/prevention & control ; Testis/virology ; Viral Vaccines/immunology ; Virulence
References:
Agianniotaki, E. I., Mathijs, E., Vandenbussche, F., Tasioudi, K. E., Haegeman, A., Iliadou, P., . . . De Clercq, K. (2017). Complete genome sequence of the lumpy skin disease virus isolated from the first reported case in Greece in 2015. Genome Announc, 5(29). https://doi.org/10.1128/genomeA.00550-17.
Alzhanova, D., Hammarlund, E., Reed, J., Meermeier, E., Rawlings, S., Ray, C. A., … Früh, K. (2014). T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Path, 10(5), e1004123. https://doi.org/10.1371/journal.ppat.1004123.
Arakawa, Y., Cordeiro, J. V., Schleich, S., Newsome, T. P., & Way, M. (2007). The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host and Microbe, 1(3), 227-240. https://doi.org/10.1016/j.chom.2007.04.006.
Asagba, M. O., & Nawathe, D. R. (1981). Evidence of sheep pox in Nigeria. Tropical Animal Health and Production, 13(1), 61. https://doi.org/10.1007/BF02237892.
Aspden, K., van Dijk, A. A., Bingham, J., Cox, D., Passmore, J. A., & Williamson, A. L. (2002). Immunogenicity of a recombinant lumpy skin disease virus (Neethling vaccine strain) expressing the rabies virus glycoprotein in cattle. Vaccine, 20(21-22), 2693-2701. https://doi.org/10.1016/S0264-410X(02)00203-7.
Babiuk, S., Bowden, T. R., Boyle, D. B., Wallace, D. B., & Kitching, R. P. (2008). Capripoxviruses: An emerging worldwide threat to sheep, goats and cattle. Transboundary and Emerging Diseases, 55(7), 263-272. https://doi.org/10.1111/j.1865-1682.2008.01043.x.
Babiuk, S., Bowden, T. R., Parkyn, G., Dalman, B., Hoa, D. M., Long, N. T., … Boyle, D. B. (2009). Yemen and Vietnam capripoxviruses demonstrate a distinct host preference for goats compared with sheep. Journal of General Virology, 90(Pt 1), 105-114. https://doi.org/10.1099/vir.0.004507-0.
Babiuk, S., Wallace, D. B., Smith, S. J., Bowden, T. R., Dalman, B., Parkyn, G., … Boyle, D. B. (2009). Detection of antibodies against capripoxviruses using an inactivated sheeppox virus ELISA. Transboundary and Emerging Diseases, 56(4), 132-141. https://doi.org/10.1111/j.1865-1682.2009.01067.x.
Balinsky, C. A., Delhon, G., Afonso, C. L., Risatti, G. R., Borca, M. V., French, R. A., … Rock, D. L. (2007). Sheeppox virus kelch-like gene SPPV-019 affects virus virulence. Journal of Virology, 81(20), 11392-11401. https://doi.org/10.1128/JVI.01093-07.
Baroudy, B. M., Venkatesan, S., & Moss, B. (1982). Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell, 28(2), 315-324. https://doi.org/10.1016/0092-8674(82)90349-X.
Barry, M., Hnatiuk, S., Mossman, K., Lee, S. F., Boshkov, L., & McFadden, G. (1997). The myxoma virus M-T4 gene encodes a novel RDEL-containing protein that is retained within the endoplasmic reticulum and is important for the productive infection of lymphocytes. Virology, 239(2), 360-377. https://doi.org/10.1006/viro.1997.8894.
Ben-Gera, J., Klement, E., Khinich, E., Stram, Y., & Shpigel, N. Y. (2015). Comparison of the efficacy of Neethling lumpy skin disease virus and x10RM65 sheep-pox live attenuated vaccines for the prevention of lumpy skin disease - The results of a randomized controlled field study. Vaccine, 33(38), 4837-4842. https://doi.org/10.1016/j.vaccine.2015.07.071.
Berhe, G., Minet, C., Le Goff, C., Barrett, T., Ngangnou, A., Grillet, C., … Diallo, A. (2003). Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections. Journal of Virology, 77(2), 1571-1577. https://doi.org/10.1128/JVI.77.2.1571-1577.2003.
Bhanuprakash, V., Indrani, B. K., Hosamani, M., & Singh, R. K. (2006). The current status of sheep pox disease. Comparative Immunology, Microbiology and Infectious Diseases, 29(1), 27-60. https://doi.org/10.1016/j.cimid.2005.12.001.
Black, D. N., Hammond, J. M., & Kitching, R. P. (1986). Genomic relationship between capripoxviruses. Virus Research, 5(2-3), 277-292. https://doi.org/10.1016/0168-1702(86)90024-9.
Bowden, T. R., Babiuk, S. L., Parkyn, G. R., Copps, J. S., & Boyle, D. B. (2008). Capripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats. Virology, 371(2), 380-393. https://doi.org/10.1016/j.virol.2007.10.002.
Bratke, K. A., McLysaght, A., & Rothenburg, S. (2013). A survey of host range genes in poxvirus genomes. Infection, Genetics and Evolution, 14, 406-425. https://doi.org/10.1016/j.meegid.2012.12.002.
Brodie, R., Smith, A. J., Roper, R. L., Tcherepanov, V., & Upton, C. (2004). Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments. BMC Bioinformatics, 5, 96. https://doi.org/10.1186/1471-2105-5-96.
Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Green, E. D., … Batzoglou, S. (2003). LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA. Genome Research, 13(4), 721-731. https://doi.org/10.1101/gr.926603.
Byun, M., Wang, X., Pak, M., Hansen, T. H., & Yokoyama, W. M. (2007). Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host and Microbe, 2(5), 306-315. https://doi.org/10.1016/j.chom.2007.09.002.
Cameron, C. M., Barrett, J. W., Liu, L., Lucas, A. R., & McFadden, G. (2005). Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. Journal of Virology, 79(10), 6052-6067. https://doi.org/10.1128/JVI.79.10.6052-6067.2005.
Carroll, K., Elroy-Stein, O., Moss, B., & Jagus, R. (1993). Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2 alpha-specific protein kinase. Journal of Biological Chemistry, 268(17), 12837-12842.
Cordeiro, J. V., Guerra, S., Arakawa, Y., Dodding, M. P., Esteban, M., & Way, M. (2009). F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS ONE, 4(12), e8506. https://doi.org/10.1371/journal.pone.0008506.
Deraspe, M., Raymond, F., Boisvert, S., Culley, A., Roy, P. H., Laviolette, F., & Corbeil, J. (2017). Phenetic comparison of prokaryotic genomes using k-mers. Molecular Biology and Evolution, 34(10), 2716-2729. https://doi.org/10.1093/molbev/msx200.
Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. https://doi.org/10.1186/1471-2105-5-113.
Engelstad, M., Howard, S. T., & Smith, G. L. (1992). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology, 188(2), 801-810. https://doi.org/10.1016/0042-6822(92)90535-W.
Epperson, M. L., Lee, C. A., & Fremont, D. H. (2012). Subversion of cytokine networks by virally encoded decoy receptors. Immunological Reviews, 250(1), 199-215. https://doi.org/10.1111/imr.12009.
Fakri, F., Bamouh, Z., Ghzal, F., Baha, W., Tadlaoui, K., Fihri, O. F., … Elharrak, M. (2018). Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines. Virology, 514, 211-215. https://doi.org/10.1016/j.virol.2017.11.015.
Ferguson, B. J., Benfield, C. T. O., Ren, H., Lee, V. H., Frazer, G. L., Strnadova, P., … Smith, G. L. (2013). Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. Journal of General Virology, 94(Pt 9), 2070-2081. https://doi.org/10.1099/vir.0.054114-0.
Gari, G., Abie, G., Gizaw, D., Wubete, A., Kidane, M., Asgedom, H., … Tuppurainen, E. S. M. (2015). Evaluation of the safety, immunogenicity and efficacy of three capripoxvirus vaccine strains against lumpy skin disease virus. Vaccine, 33(28), 3256-3261. https://doi.org/10.1016/j.vaccine.2015.01.035.
Gershon, P. D., & Black, D. N. (1989). A capripoxvirus pseudogene whose only intact homologs are in other poxvirus genomes. Virology, 172(1), 350-354. https://doi.org/10.1016/0042-6822(89)90138-4.
Hajer, I., Abbas, B., & Abu Samra, M. T. (1988). Capripox virus in sheep and goats in Sudan. Revue D'elevage Et De Medecine Veterinaire Des Pays Tropicaux, 41(2), 125-128.
Haller, S. L., Peng, C., McFadden, G., & Rothenburg, S. (2014). Poxviruses and the evolution of host range and virulence. Infection, Genetics and Evolution, 21, 15-40. https://doi.org/10.1016/j.meegid.2013.10.014.
Ho, C. K., & Shuman, S. (1996). Mutational analysis of the vaccinia virus E3 protein defines amino acid residues involved in E3 binding to double-stranded RNA. Journal of Virology, 70(4), 2611-2614.
Hood, D. B., Huntington, J. A., & Gettins, P. G. (1994). Alpha 1-proteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways. Biochemistry, 33(28), 8538-8547.
Hopker, A., Pandey, N., Saikia, D., Goswami, J., Hopker, S., Saikia, R., & Sargison, N. (2019). Spread and impact of goat pox ("sagolay bohonta") in a village smallholder community around Kaziranga National Park, Assam,India. Tropical Animal Health and Production, 51(4), 819-829. https://doi.org/10.1007/s11250-018-1759-4.
Hunter, P., & Wallace, D. (2001). Lumpy skin disease in southern Africa: A review of the disease and aspects of control. Journal of the South African Veterinary Association, 72(2), 68-71. https://doi.org/10.4102/jsava.v72i2.619.
Irwin, C. R., & Evans, D. H. (2012). Modulation of the myxoma virus plaque phenotype by vaccinia virus protein F11. Journal of Virology, 86(13), 7167-7179. https://doi.org/10.1128/JVI.06936-11.
Irwin, C. R., Favis, N. A., Agopsowicz, K. C., Hitt, M. M., & Evans, D. H. (2013). Myxoma virus oncolytic efficiency can be enhanced through chemical or genetic disruption of the actin cytoskeleton. PLoS ONE, 8(12), e84134. https://doi.org/10.1371/journal.pone.0084134.
Izmailyan, R., & Chang, W. (2008). Vaccinia virus WR53.5/F14.5 protein is a new component of intracellular mature virus and is important for calcium-independent cell adhesion and vaccinia virus virulence in mice. Journal of Virology, 82(20), 10079-10087. https://doi.org/10.1128/JVI.00816-08.
Kara, P. D., Afonso, C. L., Wallace, D. B., Kutish, G. F., Abolnik, C., Lu, Z., … Rock, D. L. (2003). Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of Lumpy skin disease virus. Archives of Virology, 148(7), 1335-1356. https://doi.org/10.1007/s00705-003-0102-0.
Kawagishi-Kobayashi, M., Cao, C., Lu, J., Ozato, K., & Dever, T. E. (2000). Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product. Virology, 276(2), 424-434. https://doi.org/10.1006/viro.2000.0561.
Kawagishi-Kobayashi, M., Silverman, J. B., Ung, T. L., & Dever, T. E. (1997). Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Molecular and Cellular Biology, 17(7), 4146-4158. https://doi.org/10.1128/MCB.17.7.4146.
Kitching, R. P. (1985). Studies on Sheep and Goat Pox. (Ph.D.), Edinborough.
Kitching, R. P. (1986). Passive protection of sheep against capripoxvirus. Research in Veterinary Science, 41(2), 247-250. https://doi.org/10.1016/S0034-5288(18)30607-6.
Kitching, R. P. (2003). Vaccines for lumpy skin disease, sheep pox and goat pox. Developments in Biologicals, 114, 161-167.
Kitching, R. P., McGrane, J. J., & Taylor, W. P. (1986). Capripox in the Yemen Arab Republic and the Sultanate of Oman. Tropical Animal Health and Production, 18(2), 115-122. https://doi.org/10.1007/BF02359725.
Kitching, R. P., & Mellor, P. S. (1986). Insect transmission of capripoxvirus. Research in Veterinary Science, 40(2), 255-258. https://doi.org/10.1016/S0034-5288(18)30523-X.
Kitching, R. P., & Taylor, W. P. (1985a). Clinical and antigenic relationship between isolates of sheep and goat pox viruses. Tropical Animal Health and Production, 17(2), 64-74. https://doi.org/10.1007/BF02360774.
Kitching, R. P., & Taylor, W. P. (1985b). Transmission of capripoxvirus. Research in Veterinary Science, 39(2), 196-199. https://doi.org/10.1016/S0034-5288(18)31744-2.
Kvansakul, M., Caria, S., & Hinds, M. G. (2017). The Bcl-2 family in host-virus interactions. Viruses, 9(10), https://doi.org/10.3390/v9100290.
Kvansakul, M., van Delft, M. F., Lee, E. F., Gulbis, J. M., Fairlie, W. D., Huang, D. C., & Colman, P. M. (2007). A structural viral mimic of prosurvival Bcl-2: A pivotal role for sequestering proapoptotic Bax and Bak. Molecular Cell, 25(6), 933-942. https://doi.org/10.1016/j.molcel.2007.02.004.
Liu, B., Panda, D., Mendez-Rios, J. D., Ganesan, S., Wyatt, L. S., & Moss, B. (2018). Identification of poxvirus genome uncoating and DNA replication factors with mutually redundant roles. Journal of Virology, 92(7). https://doi.org/10.1128/JVI.02152-17.
Liu, R., & Moss, B. (2018). Vaccinia virus C9 Ankyrin Repeat/F-box protein is a newly identified antagonist of the type I interferon-induced antiviral state. Journal of Virology, 92(9). https://doi.org/10.1128/JVI.00053-18.
Lojkic, I., Simic, I., Kresic, N., & Bedekovic, T. (2018). Complete Genome Sequence of a Lumpy Skin Disease Virus Strain Isolated from the Skin of a Vaccinated Animal. Genome Announc, 6(22). https://doi.org/10.1128/genomeA.00482-18.
Mathijs, E., Vandenbussche, F., Haegeman, A., Al-Majali, A., De Clercq, K., & Van Borm, S. (2016b). Complete genome sequence of the goatpox virus strain Gorgan obtained directly from a commercial live attenuated vaccine. Genome Announc, 4(5). https://doi.org/10.1128/genomeA.01113-16.
Mathijs, E., Vandenbussche, F., Haegeman, A., King, A., Nthangeni, B., Potgieter, C., . . . De Clercq, K. (2016a). Complete genome sequences of the Neethling-like lumpy skin disease virus strains obtained directly from three commercial live attenuated vaccines. Genome Announc, 4(6), e01255-16. https://doi.org/10.1128/genomeA.01255-16.
McCoy, W. H., Wang, X., Yokoyama, W. M., Hansen, T. H., & Fremont, D. H. (2012). Structural mechanism of ER retrieval of MHC class I by cowpox. PLoS Biology, 10(11), e1001432. https://doi.org/10.1371/journal.pbio.1001432.
Meng, X., Schoggins, J., Rose, L., Cao, J., Ploss, A., Rice, C. M., & Xiang, Y. (2012). C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1. Journal of Virology, 86(8), 4538-4547. https://doi.org/10.1128/JVI.06140-11.
Merchlinsky, M. (1990). Mutational analysis of the resolution sequence of vaccinia virus DNA: Essential sequence consists of two separate AT-rich regions highly conserved among poxviruses. Journal of Virology, 64(10), 5029-5035.
Merchlinsky, M., & Moss, B. (1989). Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. Journal of Virology, 63(10), 4354-4361.
Moon, K. B., Turner, P. C., & Moyer, R. W. (1999). SPI-1-dependent host range of rabbitpox virus and complex formation with cathepsin G is associated with serpin motifs. Journal of Virology, 73(11), 8999-9010.
Myskiw, C., Arsenio, J., Hammett, C., van Bruggen, R., Deschambault, Y., Beausoleil, N., … Cao, J. (2011). Comparative analysis of poxvirus orthologues of the vaccinia virus E3 protein: Modulation of protein kinase R activity, cytokine responses, and virus pathogenicity. Journal of Virology, 85(23), 12280-12291. https://doi.org/10.1128/JVI.05505-11.
Nelson, C. A., Epperson, M. L., Singh, S., Elliott, J. I., & Fremont, D. H. (2015). Structural conservation and functional diversity of the Poxvirus Immune Evasion (PIE) domain superfamily. Viruses, 7(9), 4878-4898. https://doi.org/10.3390/v7092848.
Noyce, R. S., Lederman, S., & Evans, D. H. (2018). Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS ONE, 13(1), e0188453. https://doi.org/10.1371/journal.pone.0188453.
Oliveira, G. P., Rodrigues, R. A. L., Lima, M. T., Drumond, B. P., & Abrahao, J. S. (2017). Poxvirus host range genes and virus-host. Spectrum: A Critical Review. Viruses, 9(11), 331. https://doi.org/10.3390/v9110331.
Parrish, S., Resch, W., & Moss, B. (2007). Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2139-2144. https://doi.org/10.1073/pnas.0611685104.
Qin, L., Upton, C., Hazes, B., & Evans, D. H. (2011). Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine. Journal of Virology, 85(24), 13049-13060. https://doi.org/10.1128/JVI.05779-11.
Roberts, K. L., & Smith, G. L. (2008). Vaccinia virus morphogenesis and dissemination. Trends in Microbiology, 16(10), 472-479. https://doi.org/10.1016/j.tim.2008.07.009.
Roth, J. A., & Spickler, A. R. (2003). A survey of vaccines produced for OIE list A diseases in OIE member countries. Developments in Biologicals, 114, 5-25.
Shisler, J. L., & Jin, X. L. (2004). The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing IkappaBalpha degradation. Journal of Virology, 78(7), 3553-3560.
Sivan, G., Ormanoglu, P., Buehler, E. C., Martin, S. E., & Moss, B. (2015). Identification of restriction factors by human genome-wide RNA interference screening of viral host range mutants exemplified by discovery of SAMD9 and WDR6 as inhibitors of the vaccinia virus K1L-C7L- mutant. MBio, 6(4), e01122. https://doi.org/10.1128/mBio.01122-15.
Smith, G. L., Benfield, C. T., Maluquer de Motes, C., Mazzon, M., Ember, S. W., Ferguson, B. J., & Sumner, R. P. (2013). Vaccinia virus immune evasion: Mechanisms, virulence and immunogenicity. Journal of General Virology, 94(Pt 11), 2367-2392. https://doi.org/10.1099/vir.0.055921-0.
Smith, G. L., Talbot-Cooper, C., & Lu, Y. (2018). How does vaccinia virus interfere with interferon? Advances in Virus Research, 100, 355-378. https://doi.org/10.1016/bs.aivir.2018.01.003.
Sonnberg, S., Seet, B. T., Pawson, T., Fleming, S. B., & Mercer, A. A. (2008). Poxvirus ankyrin repeat proteins are a unique class of F-box proteins that associate with cellular SCF1 ubiquitin ligase complexes. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10955-10960. https://doi.org/10.1073/pnas.0802042105.
Sprygin, A., Babin, Y., Pestova, Y., Kononova, S., Byadovskaya, O., & Kononov, A. (2019). Complete Genome Sequence of the Lumpy Skin Disease Virus Recovered from the First Outbreak in the Northern Caucasus Region of Russia in 2015. Microbiol Resour Announc, 8(8). https://doi.org/10.1128/MRA.01733-18.
Sprygin, A., Babin, Y., Pestova, Y., Kononova, S., Wallace, D. B., Van Schalkwyk, A., … Kononov, A. (2018). Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field. PLoS ONE, 13(12), e0207480. https://doi.org/10.1371/journal.pone.0207480.
Tcherepanov, V., Ehlers, A., & Upton, C. (2006). Genome Annotation Transfer Utility (GATU): Rapid annotation of viral genomes using a closely related reference genome. BMC Genomics, 7, 150. https://doi.org/10.1186/1471-2164-7-150.
Teoh, M. L., Turner, P. V., & Evans, D. H. (2005). Tumorigenic poxviruses up-regulate intracellular superoxide to inhibit apoptosis and promote cell proliferation. Journal of Virology, 79(9), 5799-5811. https://doi.org/10.1128/JVI.79.9.5799-5811.2005.
Toplak, I., Petrovic, T., Vidanovic, D., Lazic, S., Sekler, M., Manic, M., . . . Kuhar, U. (2017). Complete genome sequence of lumpy skin disease virus isolate SERBIA/Bujanovac/2016, Detected during an Outbreak in the Balkan Area. Genome Announc, 5(35). https://doi.org/10.1128/genomeA.00882-17.
Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Kutish, G. F., & Rock, D. L. (2001). Genome of lumpy skin disease virus. Journal of Virology, 75(15), 7122-7130. https://doi.org/10.1128/JVI.75.15.7122-7130.2001.
Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Sur, J.-H., Sandybaev, N. T., … Rock, D. L. (2002). The genomes of sheeppox and goatpox viruses. Journal of Virology, 76(12), 6054-6061. https://doi.org/10.1128/JVI.76.12.6054-6061.2002.
Tuppurainen, E. S. M., Babiuk, S., & Klement, E. (2018). Lumpy Skin Disease. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-92411-3.
Tuppurainen, E. S. M., Pearson, C. R., Bachanek-Bankowska, K., Knowles, N. J., Amareen, S., Frost, L., … Mertens, P. P. C. (2014). Characterization of sheep pox virus vaccine for cattle against lumpy skin disease virus. Antiviral Research, 109, 1-6. https://doi.org/10.1016/j.antiviral.2014.06.009.
Tuppurainen, E. S. M., Venter, E. H., Shisler, J. L., Gari, G., Mekonnen, G. A., Juleff, N., … Babiuk, L. A. (2017). Review: Capripoxvirus diseases: Current status and opportunities for control. Transboundary and Emerging Diseases, 64(3), 729-745. https://doi.org/10.1111/tbed.12444.
Valderrama, F., Cordeiro, J. V., Schleich, S., Frischknecht, F., & Way, M. (2006). Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science, 311(5759), 377-381. https://doi.org/10.1126/science.1122411.
Veyer, D. L., Carrara, G., Maluquer de Motes, C., & Smith, G. L. (2017). Vaccinia virus evasion of regulated cell death. Immunology Letters, 186, 68-80. https://doi.org/10.1016/j.imlet.2017.03.015.
Wallace, D. B., Ellis, C. E., Espach, A., Smith, S. J., Greyling, R. R., & Viljoen, G. J. (2006). Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever. Vaccine, 24(49-50), 7181-7189. https://doi.org/10.1016/j.vaccine.2006.06.041.
Wasilenko, S. T., Stewart, T. L., Meyers, A. F., & Barry, M. (2003). Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14345-14350. https://doi.org/10.1073/pnas.2235583100.
Yeruham, I., Yadin, H., Van Ham, M., Bumbarov, V., Soham, A., & Perl, S. (2007). Economic and epidemiological aspects of an outbreak of sheeppox in a dairy sheep flock. The Veterinary Record, 160(7), 236-237. https://doi.org/10.1136/vr.160.7.236.
Young, E., Basson, P. A., & Weiss, K. E. (1970). Experimental infection of game animals with lumpy skin disease virus (prototype strain Neethling). Onderstepoort Journal of Veterinary Research, 37(2), 79-87.
Zachertowska, A., Brewer, D., & Evans, D. H. (2004). MALDI-TOF mass spectroscopy detects the capsid structural instabilities created by deleting the myxoma virus cupro-zinc SOD1 homolog M131R. Journal of Virological Methods, 122(1), 63-72. https://doi.org/10.1016/j.jviromet.2004.08.004.
Zeng, X., Chi, X., Li, W., Hao, W., Li, M., Huang, X., … Wang, S. (2014). Complete genome sequence analysis of goatpox virus isolated from China shows high variation. Veterinary Microbiology, 173(1-2), 38-49. https://doi.org/10.1016/j.vetmic.2014.07.013.
Zhang, M., Sun, Y., Chen, W., & Bu, Z. (2018). The 135 gene of goatpox virus encodes an inhibitor of NF-kappaB and apoptosis and may serve as an improved insertion site to generate vectored live vaccine. Journal of Virology, 92(18). https://doi.org/10.1128/JVI.00190-18.
Zhao, Z., Zhu, X., Wu, N. A., Qin, X., Huang, C., Wu, G., … Zhang, Z. (2019). Species-specific inhibition of capripoxvirus replication by host antiviral protein kinase R. Annals of the New York Academy of Sciences, 1438(1), 3-17. https://doi.org/10.1111/nyas.13976.
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406-3415. https://doi.org/10.1093/nar/gkg595.
Grant Information:
Australian Biosecurity Cooperative Research Centre for Emerging Infectious Diseases; RGPIN 05201 Natural Sciences and Engineering Research Council of Canada; PS 159614 Canadian Institutes for Health Research; Canada Foundation for Innovation
Contributed Indexing:
Keywords: capripoxvirus; goatpox virus; lumpy skin disease virus; poxvirus; sheeppox virus; virulence
Molecular Sequence:
GENBANK MN072619; MN072621; MN072620; MN072622; MN072625; MN072623; MN072624; MN072627; MN072626; MN072631; MN072630; MN072629; MN072628; AY243312; KT438550; KT438551; MG972412; KX764645; KX764644; KX764643; AF409138; MH64667; KY829023; KY702007; MH893760; KX894508; AF409137; KX683219; AF325528; KC951854; MH381810; AY077836; AY077835; KX576657; AY077834; AY077833; AY077832; KSGP0240; AWX92162.1
Substance Nomenclature:
0 (Viral Vaccines)
Entry Date(s):
Date Created: 20190806 Date Completed: 20200417 Latest Revision: 20200417
Update Code:
20240105
DOI:
10.1111/tbed.13322
PMID:
31379093
Czasopismo naukowe
The genus Capripoxvirus in the subfamily Chordopoxvirinae, family Poxviridae, comprises sheeppox virus (SPPV), goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which cause the eponymous diseases across parts of Africa, the Middle East and Asia. These diseases cause significant economic losses and can have a devastating impact on the livelihoods and food security of small farm holders. So far, only live classically attenuated SPPV, GTPV and LSDV vaccines are commercially available and the history, safety and efficacy of many have not been well established. Here, we report 13 new capripoxvirus genome sequences, including the hairpin telomeres, from both pathogenic field isolates and vaccine strains. We have also updated the genome annotations to incorporate recent advances in our understanding of poxvirus biology. These new genomes and genes grouped phenetically with other previously sequenced capripoxvirus strains, and these new alignments collectively identified several recurring alterations in genes thought to modulate virulence and host range. In particular, some of the many large capripoxvirus ankyrin and kelch-like proteins are commonly mutated in vaccine strains, while the variola virus B22R-like gene homolog has also been disrupted in many vaccine isolates. Among these vaccine isolates, frameshift mutations are especially common and clearly present a risk of reversion to wild type in vaccines bearing these mutations. A consistent pattern of gene inactivation from LSDV to GTPV and then SPPV is also observed, much like the pattern of gene loss in orthopoxviruses, but, rather surprisingly, the overall genome size of ~150 kbp remains relatively constant. These data provide new insights into the evolution of capripoxviruses and the determinants of pathogenicity and host range. They will find application in the development of new vaccines with better safety, efficacy and trade profiles.
(© 2019 Her Majesty the Queen in Right of Canada Transboundary and Emerging Diseases © 2019 Blackwell Verlag GmbH.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies