Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria.

Tytuł:
Increased reactive oxygen species production and maintenance of membrane potential in VDAC-less Neurospora crassa mitochondria.
Autorzy:
Shuvo SR; Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.; Department of Biochemistry and Microbiology, North South University Dhaka, Dhaka, Bangladesh.
Wiens LM; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Subramaniam S; Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Treberg JR; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Court DA; Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .
Źródło:
Journal of bioenergetics and biomembranes [J Bioenerg Biomembr] 2019 Oct; Vol. 51 (5), pp. 341-354. Date of Electronic Publication: 2019 Aug 07.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 1999- : New York, NY : Springer
Original Publication: New York, Plenum Press.
MeSH Terms:
Membrane Potentials*
Mitochondria/*metabolism
Neurospora crassa/*ultrastructure
Reactive Oxygen Species/*metabolism
Voltage-Dependent Anion Channels/*deficiency
Electron Transport Complex I/metabolism ; Electron Transport Complex II/metabolism ; Energy Metabolism ; Mitochondrial Membranes/metabolism ; Mitochondrial Proteins/metabolism ; Neurospora crassa/enzymology ; Neurospora crassa/metabolism ; Oxidoreductases/metabolism ; Oxygen Consumption ; Plant Proteins/metabolism
References:
J Biosci. 2010 Mar;35(1):119-26. (PMID: 20413916)
Sci Rep. 2017 Mar 22;7:45184. (PMID: 28327594)
J Biol Chem. 2011 Aug 5;286(31):27103-10. (PMID: 21659507)
J Neurochem. 2002 Mar;80(5):780-7. (PMID: 11948241)
Biochim Biophys Acta Bioenerg. 2018 Apr;1859(4):270-279. (PMID: 29408701)
Acta Biochim Pol. 1999;46(4):991-1000. (PMID: 10824870)
Can J Microbiol. 2017 Aug;63(8):730-738. (PMID: 28414919)
Biochem Soc Trans. 2017 Apr 15;45(2):477-488. (PMID: 28408488)
FEBS Lett. 2013 Jun 19;587(12):1799-804. (PMID: 23669366)
PLoS Genet. 2013;9(1):e1003182. (PMID: 23300486)
Microb Cell. 2015 Mar 02;2(3):68-73. (PMID: 28357279)
Mol Cell Biol. 1997 Oct;17(10):5727-38. (PMID: 9315631)
Biochem J. 2008 Jan 15;409(2):491-9. (PMID: 17916065)
J Cell Biol. 1994 Mar;124(5):637-48. (PMID: 8120088)
Biochem J. 1984 Dec 1;224(2):525-34. (PMID: 6517863)
J Cell Biol. 2017 Nov 6;216(11):3485-3495. (PMID: 28916712)
Comp Biochem Physiol B Biochem Mol Biol. 2016 Jan;191:99-107. (PMID: 26456509)
J Biol Chem. 1994 Apr 22;269(16):11893-901. (PMID: 8163488)
Mitochondrion. 2012 Mar;12(2):220-9. (PMID: 21946565)
J Biol Chem. 1996 Jun 7;271(23):13593-9. (PMID: 8662769)
FEBS Lett. 2010 Jul 2;584(13):2837-44. (PMID: 20434446)
Fungal Genet Biol. 2003 Jul;39(2):176-90. (PMID: 12781676)
Nature. 1979 Jun 14;279(5714):643-5. (PMID: 450112)
Biochem Cell Biol. 2017 Apr;95(2):318-327. (PMID: 28177769)
PLoS One. 2013 Dec 06;8(12):e81522. (PMID: 24324700)
Methods Mol Biol. 2007;372:107-23. (PMID: 18314721)
Biochim Biophys Acta. 2002 Sep 10;1555(1-3):187-91. (PMID: 12206913)
J Biol Chem. 2013 Apr 26;288(17):11920-9. (PMID: 23471966)
J Exp Biol. 2017 Apr 1;220(Pt 7):1170-1180. (PMID: 28356365)
Biochem J. 2004 Sep 1;382(Pt 2):511-7. (PMID: 15175007)
Biochim Biophys Acta. 2008 Oct;1778(10):1978-2021. (PMID: 18510943)
J Biol Chem. 2012 Aug 3;287(32):27255-64. (PMID: 22689576)
Eukaryot Cell. 2007 Dec;6(12):2391-405. (PMID: 17873079)
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1320-31. (PMID: 23269318)
Biochem J. 2012 Jun 15;444(3):475-85. (PMID: 22397371)
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357. (PMID: 16801547)
Biochem Biophys Res Commun. 1990 Aug 31;171(1):354-61. (PMID: 2168177)
Chem Biol. 2011 Nov 23;18(11):1474-81. (PMID: 22118681)
BMC Evol Biol. 2007 Feb 28;7:31. (PMID: 17328803)
Science. 2008 Aug 29;321(5893):1206-10. (PMID: 18755977)
Exp Gerontol. 2010 Aug;45(7-8):466-72. (PMID: 20064600)
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17742-7. (PMID: 18988731)
J Cell Sci. 2014 May 15;127(Pt 10):2282-90. (PMID: 24610944)
J Membr Biol. 1998 Jan 15;161(2):173-81. (PMID: 9435273)
Biochim Biophys Acta. 2005 Apr-May;1707(2-3):211-20. (PMID: 15863099)
Biosci Rep. 2015 Dec 08;36(1):e00286. (PMID: 26647379)
J Biol Chem. 2003 Feb 21;278(8):5557-63. (PMID: 12482755)
J Biol Chem. 1990 Jun 15;265(17):9881-7. (PMID: 2141023)
Redox Biol. 2015;4:381-98. (PMID: 25744690)
Biochim Biophys Acta. 2001 Apr 2;1504(2-3):179-95. (PMID: 11245784)
FEBS Lett. 1996 Jul 15;390(1):73-7. (PMID: 8706833)
Methods Mol Biol. 2012;837:49-62. (PMID: 22215540)
J Biol Chem. 2011 Sep 9;286(36):31361-72. (PMID: 21708945)
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15370-5. (PMID: 18832158)
J Membr Biol. 1976 Dec 28;30(2):99-120. (PMID: 1011248)
Mol Aspects Med. 2010 Jun;31(3):227-85. (PMID: 20346371)
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1276-80. (PMID: 20144586)
Adv Exp Med Biol. 2017;981:323-347. (PMID: 29594867)
Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8271-6. (PMID: 10393984)
Essays Biochem. 2010;47:53-67. (PMID: 20533900)
Free Radic Biol Med. 2012 Jan 15;52(2):402-9. (PMID: 22100504)
Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:561-591. (PMID: 11337409)
Biochem Biophys Res Commun. 2007 Jun 15;357(4):1065-70. (PMID: 17462593)
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):E7276-85. (PMID: 26655341)
Arch Biochem Biophys. 2008 Nov 1;479(1):39-45. (PMID: 18768136)
J Biol Chem. 2009 Jun 12;284(24):16236-45. (PMID: 19366681)
Biochim Biophys Acta. 2016 Jun;1858(6):1350-61. (PMID: 26997586)
Contributed Indexing:
Keywords: Alternative oxidase; Membrane potential; Mitochondrial porin; Neurospora crassa; Reactive oxygen species; VDAC
Substance Nomenclature:
0 (Mitochondrial Proteins)
0 (Plant Proteins)
0 (Reactive Oxygen Species)
0 (Voltage-Dependent Anion Channels)
EC 1.- (Oxidoreductases)
EC 1.- (alternative oxidase)
EC 1.3.5.1 (Electron Transport Complex II)
EC 7.1.1.2 (Electron Transport Complex I)
Entry Date(s):
Date Created: 20190809 Date Completed: 20200720 Latest Revision: 20200720
Update Code:
20240104
DOI:
10.1007/s10863-019-09807-6
PMID:
31392584
Czasopismo naukowe
The highly abundant voltage-dependent anion-selective channel (VDAC) allows transit of metabolites across the mitochondrial outer membrane. Previous studies in Neurospora crassa showed that the LoPo strain, expressing 50% of normal VDAC levels, is indistinguishable from wild-type (WT). In contrast, the absence of VDAC (ΔPor-1), or the expression of an N-terminally truncated variant VDAC (ΔN2-12porin), is associated with deficiencies in cytochromes b and aa 3 of complexes III and IV and concomitantly increased alternative oxidase (AOX) activity. These observations led us to investigate complex I and complex II activities in these strains, and to explore their mitochondrial bioenergetics. The current study reveals that the total NADH dehydrogenase activity is similar in mitochondria from WT, LoPo, ΔPor-1 and ΔN2-12porin strains; however, in ΔPor-1 most of this activity is the product of rotenone-insensitive alternative NADH dehydrogenases. Unexpectedly, LoPo mitochondria have increased complex II activity. In all mitochondrial types analyzed, oxygen consumption is higher in the presence of the complex II substrate succinate, than with the NADH-linked (complex I) substrates glutamate and malate. When driven by a combination of complex I and II substrates, membrane potentials (Δψ) and oxygen consumption rates (OCR) under non-phosphorylating conditions are similar in all mitochondria. However, as expected, the induction of state 3 (phosphorylating) conditions in ΔPor-1 mitochondria is associated with smaller but significant increases in OCR and smaller decreases in Δψ than those seen in wild-type mitochondria. High ROS production, particularly in the presence of rotenone, was observed under non-phosphorylating conditions in the ΔPor-1 mitochondria. Thus, the absence of VDAC is associated with increased ROS production, in spite of AOX activity and wild-type OCR in ΔPor-1 mitochondria.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies