Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes.

Tytuł:
Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes.
Autorzy:
Tattini L; CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France.
Tellini N; CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France.
Mozzachiodi S; CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France.
D'Angiolo M; CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France.
Loeillet S; CNRS UMR3244, Institut Curie, PSL Research University, Paris, France.
Nicolas A; CNRS UMR3244, Institut Curie, PSL Research University, Paris, France.
Liti G; CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France.
Źródło:
Molecular biology and evolution [Mol Biol Evol] 2019 Dec 01; Vol. 36 (12), pp. 2861-2877.
Typ publikacji:
Evaluation Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2003- : New York, NY : Oxford University Press
Original Publication: [Chicago, Ill.] : University of Chicago Press, [c1983-
MeSH Terms:
Evolution, Molecular*
Genetic Techniques*
Hybridization, Genetic*
Mutation*
Polymorphism, Genetic*
Diploidy ; Genome, Fungal ; Saccharomyces cerevisiae
References:
Sci Rep. 2017 Feb 24;7:43169. (PMID: 28233799)
PLoS Biol. 2015 Jul 07;13(7):e1002195. (PMID: 26151137)
Yeast. 2018 Jan;35(1):5-20. (PMID: 28681409)
Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
Nat Biotechnol. 2018 Dec 6;36(12):1121. (PMID: 30520871)
PLoS One. 2012;7(6):e38767. (PMID: 22761703)
Nat Rev Genet. 2011 Sep 16;12(10):703-14. (PMID: 21921926)
Nat Biotechnol. 2017 Sep;35(9):852-857. (PMID: 28650462)
Nat Rev Genet. 2017 Oct;18(10):581-598. (PMID: 28714481)
Genetics. 2008 Jan;178(1):67-82. (PMID: 18202359)
Yeast. 2018 Jan;35(1):39-50. (PMID: 28787090)
Bioinformatics. 2014 Oct 15;30(20):2843-51. (PMID: 24974202)
Genome Res. 2017 May;27(5):757-767. (PMID: 28381613)
BMC Res Notes. 2014 Dec 01;7:864. (PMID: 25435282)
Nat Ecol Evol. 2019 Feb;3(2):170-177. (PMID: 30697003)
Mol Biol Evol. 2015 Jul;32(7):1695-707. (PMID: 25750179)
PLoS Biol. 2018 Dec 18;16(12):e3000069. (PMID: 30562346)
PLoS Genet. 2010 Sep 09;6(9):e1001109. (PMID: 20838597)
PLoS Genet. 2016 Feb 01;12(2):e1005781. (PMID: 26828862)
Mol Biol Evol. 2017 Jul 1;34(7):1596-1612. (PMID: 28369610)
Genome Biol. 2004;5(2):R12. (PMID: 14759262)
Nature. 2003 May 15;423(6937):241-54. (PMID: 12748633)
Nat Rev Genet. 2013 Dec;14(12):827-39. (PMID: 24166031)
Nat Commun. 2016 Nov 02;7:13311. (PMID: 27804950)
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9272-7. (PMID: 18583475)
Genome Res. 2017 May;27(5):665-676. (PMID: 28360232)
Curr Biol. 2019 May 20;29(10):1584-1591.e3. (PMID: 31056389)
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5046-E5055. (PMID: 29760081)
Cell Rep. 2017 Oct 17;21(3):732-744. (PMID: 29045840)
Trends Genet. 2013 May;29(5):309-17. (PMID: 23395329)
Bioinformatics. 2012 Apr 15;28(8):1166-7. (PMID: 22368248)
Mol Biol Evol. 2019 Apr 1;36(4):691-708. (PMID: 30657986)
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6142-6. (PMID: 22451943)
Mol Biol Evol. 2018 Nov 1;35(11):2835-2849. (PMID: 30184140)
Cell. 2018 Jan 25;172(3):478-490.e15. (PMID: 29373829)
BMC Bioinformatics. 2013 Sep 17;14:274. (PMID: 24044377)
Yeast. 2018 Jan;35(1):21-38. (PMID: 29131388)
BMC Genomics. 2015 Apr 24;16:340. (PMID: 25903059)
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1897-902. (PMID: 24449905)
Exp Gerontol. 2008 Mar;43(3):123-9. (PMID: 18054191)
Nature. 2015 Jul 23;523(7561):463-7. (PMID: 26176923)
Nat Genet. 2017 Nov;49(11):1654-1660. (PMID: 28945251)
Bioinformatics. 2011 Jan 15;27(2):268-9. (PMID: 21081509)
Science. 2016 May 27;352(6289):1113-6. (PMID: 27230379)
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16144-9. (PMID: 12446845)
Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5. (PMID: 22110037)
Nat Rev Genet. 2016 May 17;17(6):333-51. (PMID: 27184599)
Nat Commun. 2014 Jun 02;5:4044. (PMID: 24887054)
Nat Biotechnol. 2018 Oct;36(9):875-879. (PMID: 30125266)
Brief Bioinform. 2014 Mar;15(2):256-78. (PMID: 23341494)
Nat Biotechnol. 2018 Oct 22;:. (PMID: 30346939)
Yeast. 2018 Jan;35(1):51-69. (PMID: 29027262)
Genetics. 2006 Oct;174(2):839-50. (PMID: 16951060)
PLoS One. 2018 Apr 5;13(4):e0194472. (PMID: 29621252)
Bioinformatics. 2011 Mar 1;27(5):718-9. (PMID: 21208982)
Bioinformatics. 2018 Jul 1;34(13):i105-i114. (PMID: 29949989)
Bioinformatics. 2011 Nov 1;27(21):2987-93. (PMID: 21903627)
PLoS One. 2012;7(1):e30377. (PMID: 22276185)
PLoS Genet. 2008 Dec;4(12):e1000303. (PMID: 19079573)
Nat Commun. 2018 Aug 2;9(1):3040. (PMID: 30072691)
Bioinformatics. 2011 Aug 1;27(15):2156-8. (PMID: 21653522)
Nature. 2018 Apr;556(7701):339-344. (PMID: 29643504)
Fly (Austin). 2012 Apr-Jun;6(2):80-92. (PMID: 22728672)
Nat Biotechnol. 2018 Sep 6;36(9):815-816. (PMID: 30188541)
Nature. 2019 Feb;566(7743):275-278. (PMID: 30700905)
Nat Commun. 2014 May 07;5:3819. (PMID: 24804896)
Genes (Basel). 2018 Oct 09;9(10):null. (PMID: 30304863)
PLoS Genet. 2013 Mar;9(3):e1003366. (PMID: 23555283)
PLoS Genet. 2018 Apr 5;14(4):e1007308. (PMID: 29621242)
G3 (Bethesda). 2014 Mar 20;4(3):389-98. (PMID: 24374639)
Genome Res. 2008 Nov;18(11):1851-8. (PMID: 18714091)
Front Bioeng Biotechnol. 2015 Jun 25;3:92. (PMID: 26161383)
Genetics. 2014 May;197(1):33-48. (PMID: 24807111)
Nature. 2015 Oct 1;526(7571):68-74. (PMID: 26432245)
Nucleic Acids Res. 2018 Nov 16;46(20):e122. (PMID: 30137425)
Nature. 2009 Mar 19;458(7236):337-41. (PMID: 19212322)
Science. 1996 Oct 25;274(5287):546, 563-7. (PMID: 8849441)
PLoS Genet. 2009 Mar;5(3):e1000410. (PMID: 19282969)
Nat Biotechnol. 2011 Jan;29(1):24-6. (PMID: 21221095)
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2310-8. (PMID: 24847077)
Nat Rev Genet. 2016 Aug;17(8):459-69. (PMID: 27320129)
Nat Rev Genet. 2018 Jun;19(6):329-346. (PMID: 29599501)
Nat Rev Genet. 2015 Oct;16(10):567-82. (PMID: 26347030)
Nat Rev Genet. 2010 Jul;11(7):512-24. (PMID: 20559329)
PLoS One. 2014 Nov 19;9(11):e112963. (PMID: 25409509)
Cell. 2016 Sep 8;166(6):1397-1410.e16. (PMID: 27610566)
Nat Rev Genet. 2011 Nov 29;13(1):36-46. (PMID: 22124482)
Nat Genet. 2017 Jun;49(6):913-924. (PMID: 28416820)
Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):574-9. (PMID: 9892675)
Science. 2017 Jul 7;357(6346):10-11. (PMID: 28684474)
G3 (Bethesda). 2017 Nov 6;7(11):3669-3679. (PMID: 28916648)
Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11529-34. (PMID: 12972632)
Nature. 2017 Aug 3;548(7665):87-91. (PMID: 28746312)
PLoS One. 2016 Nov 28;11(11):e0167047. (PMID: 27893777)
PLoS Biol. 2015 Aug 07;13(8):e1002220. (PMID: 26252497)
Nat Methods. 2018 Aug;15(8):595-597. (PMID: 30013044)
Contributed Indexing:
Keywords: Saccharomyces paradoxus; genome evolution; heterozygosity; hybrid genomes; loss-of-heterozygosity; mutation rate
Entry Date(s):
Date Created: 20190810 Date Completed: 20200217 Latest Revision: 20200217
Update Code:
20240104
PubMed Central ID:
PMC6878955
DOI:
10.1093/molbev/msz177
PMID:
31397846
Czasopismo naukowe
Mutations, recombinations, and genome duplications may promote genetic diversity and trigger evolutionary processes. However, quantifying these events in diploid hybrid genomes is challenging. Here, we present an integrated experimental and computational workflow to accurately track the mutational landscape of yeast diploid hybrids (MuLoYDH) in terms of single-nucleotide variants, small insertions/deletions, copy-number variants, aneuploidies, and loss-of-heterozygosity. Pairs of haploid Saccharomyces parents were combined to generate ancestor hybrids with phased genomes and varying levels of heterozygosity. These diploids were evolved under different laboratory protocols, in particular mutation accumulation experiments. Variant simulations enabled the efficient integration of competitive and standard mapping of short reads, depending on local levels of heterozygosity. Experimental validations proved the high accuracy and resolution of our computational approach. Finally, applying MuLoYDH to four different diploids revealed striking genetic background effects. Homozygous Saccharomyces cerevisiae showed a ∼4-fold higher mutation rate compared with its closely related species S. paradoxus. Intraspecies hybrids unveiled that a substantial fraction of the genome (∼250 bp per generation) was shaped by loss-of-heterozygosity, a process strongly inhibited in interspecies hybrids by high levels of sequence divergence between homologous chromosomes. In contrast, interspecies hybrids exhibited higher single-nucleotide mutation rates compared with intraspecies hybrids. MuLoYDH provided an unprecedented quantitative insight into the evolutionary processes that mold diploid yeast genomes and can be generalized to other genetic systems.
(© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies