Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Functional ecology of congeneric variation in the leaf economics spectrum.

Tytuł:
Functional ecology of congeneric variation in the leaf economics spectrum.
Autorzy:
Ji W; College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China.
LaZerte SE; Department of Biology, Brandon University, 270 - 18th Street, Brandon, Manitoba, R7A 6A9, Canada.
Waterway MJ; Department of Plant Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
Lechowicz MJ; Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada.
Źródło:
The New phytologist [New Phytol] 2020 Jan; Vol. 225 (1), pp. 196-208. Date of Electronic Publication: 2019 Sep 09.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Photosynthesis*
Cyperaceae/*physiology
Nitrogen/*metabolism
Plant Leaves/*physiology
Cyperaceae/genetics ; Cyperaceae/growth & development ; Cyperaceae/radiation effects ; Ecology ; Light ; Organ Size ; Oxygen/metabolism ; Phenotype ; Phosphorus/metabolism ; Plant Leaves/genetics ; Plant Leaves/growth & development ; Plant Leaves/radiation effects
References:
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J. 2018. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters 21: 734-744.
AOAC. 1975. Official methods of analysis, 12th edn. Washington, DC, USA: Association of Official Analytical Chemists.
Armbruster WS, Pélabon C, Bolstad GH, Hansen TF. 2014. Integrated phenotypes: understanding trait covariation in plants and animals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369: 1-16.
Bahar NHA, Gauthier PPG, O'Sullivan OS, Brereton T, Evans JR, Atkin OK. 2018. Phosphorus deficiency alters scaling relationships between leaf gas exchange and associated traits in a wide range of contrasting Eucalyptus species. Functional Plant Biology 45: 813-826.
Bloomfield KJ, Cernusak LA, Eamus D, Ellsworth DS, Prentice IC, Wright IJ, Boer MM, Bradford MG, Cale P, Cleverly J et al. 2018. A continental-scale assessment of variability in leaf traits: within species, across sites and between seasons. Functional Ecology 32: 1492-1506.
Crous KY, O'Sullivan OS, Zaragoza-Castells J, Bloomfield KJ, Negrini ACA, Meir P, Turnbull MH, Griffin KL, Atkin OK. 2017. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. New Phytologist 215: 992-1008.
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC et al. 2016. The global spectrum of plant form and function. Nature 529: 167-171.
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist 186: 593-608.
Forsman A. 2015. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115: 276-284.
Friendly M, Fox J. 2017. Package ‘candisc’: Visualizing generalized canonical discriminant and canonical correlation analysis. [WWW document] URL https://cran.r-project.org/web/packages/candisc/candisc.pdf [accessed 1 December 2018].
Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright IJ. 2017. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92: 1156-1173.
Garnier E, Navas M-L, Grigulis K. 2016. Plant Functional Diversity: organism traits, community structure, and ecosystem properties. Oxford, UK: Oxford University Press.
Gianoli E, Valladares F. 2012. Studying phenotypic plasticity: the advantages of a broad approach. Biological Journal of the Linnean Society 105: 1-7.
Güsewell S. 2004. N: P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243-266.
Güsewell S, Schroth HM. 2017. How functional is a trait? Phosphorus mobilization through root exudates differs little between Carex species with and without specialized dauciform roots. New Phytologist 215: 1438-1450.
Hendry AP. 2016. Eco-evolutionary dynamics. Princeton, NJ, USA: Princeton University Press.
Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. University of California, Berkeley, CA, USA: California Agricultural Experimental Station Circular No. 347, 1-32.
John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20: 412-425.
Katabuchi M, Kitajima K, Wright SJ, Van Bael SA, Osnas JLD, Lichstein JW. 2017. Decomposing leaf mass into photosynthetic and structural components explains divergent patterns of trait variation within and among plant species. bioRxiv, 116855.
Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ et al. 2011. TRY - a global database of plant traits. Global Change Biology 17: 2905-2935.
Keenan TF, Niinemets Ü. 2016. Global leaf trait estimates biased due to plasticity in the shade. Nature Plants 3: 16201.
Kikuzawa K, Lechowicz MJ. 2011. Ecology of leaf longevity, Ecological Research Monograph Series. Tokyo and Berlin: Springer-Verlag.
Kikuzawa K, Lechowicz MJ. 2018. Leaf photosynthesis integrated over time. In: Adams III WW, Terashima I, eds. The leaf: a platform for performing photosynthesis. Berlin, Germany: Springer International Publishing AG. Advances in Photosynthesis and Respiration 44, 471-492.
Kikuzawa K, Shirakawa H, Suzuki M, Umeki K. 2004. Mean labor time of a leaf. Ecological Research 19: 365-374.
Květ J, Ondok JP, Nečas J, Jarvis PG. 1971. Methods of growth analysis. Šesták Z, Catský J, Jarvis PG, eds. Plant photosynthetic production manual of methods. The Hague, the Netherlands: Junk, 343-393.
Lambers H, Poorter H. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187-261.
Li L, Ma Z, Niinemets Ü, Guo D. 2017. Three key sub-leaf modules and the diversity of leaf designs. Frontiers in Plant Science 8: 1542.
Li L, McCormack ML, Ma C, Kong D, Zhang Q, Chen X, Zeng H, Niinemets Ü, Guo D. 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters 18: 899-906.
Liu Y-Y, Barabási AL. 2016. Control principles of complex systems. Reviews of Modern Physics 88: 035006.
Lloyd J, Bloomfield K, Domingues TF, Farquhar GD. 2013. Photosynthetically relevant foliar traits correlating better on a mass vs. an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytologist 199: 311-321.
Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender-Bares J. 2008. Why are evergreen leaves so contrary about shade? Trends in Ecology and Evolution 23: 299-303.
Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordonez A et al. 2015. Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology Biogeography 24: 706-717.
Mason CM, Donovan LA. 2015. Evolution of the leaf economics spectrum in herbs: evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae). Evolution 69: 2705-2720.
Messier J, Lechowicz MJ, McGill BJ, Violle C, Enquist BJ. 2018a. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology 105: 1775-1790.
Messier J, McGill BJ, Enquist BJ, Lechowicz MJ. 2016. Trait variation and integration across scales: is the leaf economics spectrum present at local scales? Ecography 40: 685-697.
Messier J, McGill BJ, Lechowicz MJ. 2010. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters 13: 838-848.
Messier J, Violle C, Enquist BJ, Lechowicz MJ, McGill BJ. 2018b. Similarities and differences in intrapopulation trait correlations of co-occurring tree species: consistent water-use relationships amid widely different correlation patterns. American Journal of Botany 105: 1477-1490.
Muir CD, Conesa MA, Roldán EJ, Molins A, Galmés J. 2017. Weak coordination between leaf structure and function among closely related tomato species. New Phytologist 213: 1642-1653.
Niinemets Ü. 2015. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist 205: 79-96.
Niklas KJ. 2006. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Annals of Botany 97: 155-163.
Onoda Y, Wright IJ. 2018. The leaf economics spectrum and its underlying physiological and anatomical principles. In: Adams III WW, Terashima I, eds. The leaf: a platform for performing photosynthesis. Berlin, Germany: Springer International Publishing AG. Advances in Photosynthesis and Respiration 44, 451-471.
Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist 214: 1447-1463.
Osnas JLD, Katabuchi M, Kitajima K, Wright SJ, Reich PB, Van Bael SA, Kraft NJB, Samanie MJ, Pacala SW, Lichstein JW. 2018. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences, USA 115: 5480-5485.
Osnas JLD, Lichstein JW, Reich PB, Pacala SW. 2013. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340: 741-744.
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234.
Poorter H, Lambers H, Evans JR. 2014. Trait correlation networks: a whole-plant perspective on the recently criticized leaf economics spectrum. New Phytologist 201: 378-382.
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182: 565-588.
Reich PB. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102: 275-301.
Reznicek AA, Catling PM. 1986. Vegetative shoots in the taxonomy of sedges (Carex, Cyperaceae). Taxon 35: 495-501.
Russo SE, Kitajima K. 2016. The ecophysiology of leaf lifespan in tropical forests: adaptive and plastic responses to environmental heterogeneity. In: Goldstein G, Santiago LS, eds. Tropical tree physiology. Berlin, Germany: Springer, 357-383.
Shipley B. 2006. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology 20: 565-574.
Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin Reich PB. 2016. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180: 923-931.
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV et al. 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters 18: 1406-1419.
Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ, USA: Princeton University Press.
Sultan SE. 2015. Organism & environment: ecological development, niche construction, and adaptation. Oxford, UK: Oxford University Press.
Valladares F, Sanchez-Gomez D, Zavala MA. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94: 1103-1116.
Violle C, Enquist BJ, McGill BJ, Lin J, Albert CH, Hulshof C, Jung V, Messier J. 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution 27: 244-252.
Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional!. Oikos 116: 882-892.
Wang H, Harrison SP, Prentice IC, Yang Y, Bai F, Togashi HF, Wang M, Zhou S, Ni J. 2018. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99: 500.
Warton DI, Duursma RA, Falster DS, Taskinen S. 2012. SMATR 3 - an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution 3: 257-259.
Warton DI, Wright IJ, Falster DS, Westoby M. 2006. Bivariate line-fitting methods for allometry. Biological Reviews 81: 259-291.
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.
Westoby M, Reich PB, Wright IJ. 2013. Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytologist 199: 322-323.
Wright IJ, Reich PB, Westoby M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology 15: 423-434.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
Wright IJ, Westoby M. 2002. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist 155: 403-416.
Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology 17: 10-19.
Yan Z, Tian D, Han W, Tang Z, Fang J. 2017. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany 120: 937-942.
Yu Q, Wu H, He N, Lu X, Wang Z, Elser JJ, Wu J, Han X. 2012. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass. PLoS ONE 7: e32162.
Contributed Indexing:
Keywords: Carex (Cyperaceae); functional integration; growth rate hypothesis; leaf economics spectrum; mass vs area proportionality; phenotypic plasticity; resource imbalance
Substance Nomenclature:
27YLU75U4W (Phosphorus)
N762921K75 (Nitrogen)
S88TT14065 (Oxygen)
Entry Date(s):
Date Created: 20190811 Date Completed: 20201214 Latest Revision: 20201214
Update Code:
20240104
DOI:
10.1111/nph.16109
PMID:
31400239
Czasopismo naukowe
Variation in resource availability can lead to phenotypic plasticity in the traits comprising the world-wide leaf economics spectrum (LES), potentially impairing plant function and complicating the use of tabulated values for LES traits in ecological studies. We compared 14 Carex (Cyperaceae) species in a factorial experiment (unshaded/shaded × sufficient/insufficient P) to analyze how changes in the network of allometric scaling relationships among LES traits influenced growth under favorable and resource-limited conditions. Changes in leaf mass per area (LMA) shifted the scaling relationships among LES traits expressed per unit area vs mass in ways that helped to sustain growth under resource limitation. Increases in area-normalized photosynthetic capacity and foliar nitrogen (N) were correlated with increased growth, offsetting losses associated with mass-normalized dark respiration and foliar N. These shifts increased the contributions to growth associated with photosynthetic N-use efficiency and the N : P ratio. Plasticity in LMA is at the hub of the functional role of the LES as an integrated and resilient complex system that balances the relationships among area- and mass-based aspects of gas exchange and foliar nutrient traits to sustain at least some degree of plant growth under differing availabilities of above- and below-ground resources.
(© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies