Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine.

Tytuł:
Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine.
Autorzy:
Oreskovic A; Department of Bioengineering, University of Washington, Seattle, Washington.
Brault ND; Department of Bioengineering, University of Washington, Seattle, Washington.
Panpradist N; Department of Bioengineering, University of Washington, Seattle, Washington.
Lai JJ; Department of Bioengineering, University of Washington, Seattle, Washington.
Lutz BR; Department of Bioengineering, University of Washington, Seattle, Washington. Electronic address: .
Źródło:
The Journal of molecular diagnostics : JMD [J Mol Diagn] 2019 Nov; Vol. 21 (6), pp. 1067-1078. Date of Electronic Publication: 2019 Aug 20.
Typ publikacji:
Comparative Study; Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: 2011- : New York : Elsevier
Original Publication: Bethesda, MD : American Society for Investigative Pathology and the Association for Molecular Pathology, 1999-
MeSH Terms:
Cell-Free Nucleic Acids/*urine
Urinalysis/*methods
Anion Exchange Resins ; Cell-Free Nucleic Acids/isolation & purification ; Guanidines ; Humans ; Reagent Kits, Diagnostic ; Real-Time Polymerase Chain Reaction ; Sepharose ; Thiocyanates ; Urinalysis/instrumentation ; Urine/chemistry
References:
Anal Biochem. 1995 Apr 10;226(2):325-30. (PMID: 7793635)
Anal Bioanal Chem. 2014 Oct;406(26):6499-512. (PMID: 24853859)
Biotechniques. 2018 May;64(5):225-230. (PMID: 29793362)
Gene. 2016 Sep 15;590(1):142-8. (PMID: 27317895)
J Phys Chem B. 2015 Aug 27;119(34):11030-40. (PMID: 25966319)
Anal Chem. 2015 Feb 3;87(3):1963-7. (PMID: 25560368)
PLoS One. 2012;7(10):e48319. (PMID: 23118982)
ACS Appl Mater Interfaces. 2015 Mar 25;7(11):6062-9. (PMID: 25710198)
J Clin Microbiol. 1996 Nov;34(11):2843-6. (PMID: 8897197)
J Clin Microbiol. 1993 Jan;31(1):31-8. (PMID: 8380182)
BMC Res Notes. 2008 Aug 28;1:70. (PMID: 18755023)
Heliyon. 2018 Jul 25;4(7):e00699. (PMID: 30094369)
Eur J Epidemiol. 2007;22(2):91-8. (PMID: 17334820)
Sci Rep. 2018 Oct 2;8(1):14707. (PMID: 30279572)
Clin Cancer Res. 2017 Jul 15;23(14):3657-3666. (PMID: 28096270)
J Mol Diagn. 2004 May;6(2):101-7. (PMID: 15096565)
Nat Commun. 2018 Jun 20;9(1):2412. (PMID: 29925834)
Infection. 2017 Jun;45(3):269-276. (PMID: 27798774)
PLoS Genet. 2016 Jul 18;12(7):e1006162. (PMID: 27428049)
PLoS One. 2013 Oct 18;8(10):e77963. (PMID: 24205045)
J Clin Microbiol. 1996 May;34(5):1209-15. (PMID: 8727904)
Clin Chem. 2013 Aug;59(8):1228-37. (PMID: 23603797)
Ann N Y Acad Sci. 2008 Aug;1137:73-81. (PMID: 18837928)
Nucleic Acids Res. 1996 Jul 1;24(13):2618-9. (PMID: 8692706)
Sci Rep. 2016 Jun 14;6:27859. (PMID: 27297799)
J Clin Microbiol. 2019 Mar 28;57(4):. (PMID: 30404942)
J Forensic Sci. 2006 Sep;51(5):1055-61. (PMID: 17018081)
Cancer Genet. 2018 Dec;228-229:21-27. (PMID: 30553469)
Clin Chem. 2000 Aug;46(8 Pt 1):1078-84. (PMID: 10926886)
Am J Cancer Res. 2017 Nov 01;7(11):2318-2332. (PMID: 29218253)
J Mol Diagn. 2017 Jan;19(1):162-168. (PMID: 27865784)
Biotechnol Prog. 2010 Nov-Dec;26(6):1678-84. (PMID: 20878648)
J Mol Diagn. 2018 Mar;20(2):215-224. (PMID: 29269279)
Clin Chem. 2007 Sep;53(9):1570-6. (PMID: 17660271)
J Phys Chem B. 2012 May 17;116(19):5661-70. (PMID: 22537288)
J Clin Microbiol. 1990 Mar;28(3):495-503. (PMID: 1691208)
Anal Biochem. 1990 Aug 15;189(1):40-50. (PMID: 2278389)
Int J Tuberc Lung Dis. 2008 Feb;12(2):146-51. (PMID: 18230246)
J Thorac Oncol. 2016 Oct;11(10):1690-700. (PMID: 27468937)
Sci Rep. 2017 Jun 16;7(1):3653. (PMID: 28623303)
Lancet Infect Dis. 2009 Aug;9(8):505-11. (PMID: 19628175)
Clin Chem. 2009 Apr;55(4):723-9. (PMID: 19181739)
J Biomol Tech. 2014 Dec;25(4):96-110. (PMID: 25365790)
PLoS One. 2017 May 5;12(5):e0176848. (PMID: 28475611)
Clin Chem. 1999 Oct;45(10):1741-6. (PMID: 10508119)
Am J Transplant. 2015 Oct;15(10):2541-51. (PMID: 26184824)
Biomicrofluidics. 2013 Jul 29;7(4):44107. (PMID: 24404041)
Grant Information:
R21 AI125975 United States AI NIAID NIH HHS
Substance Nomenclature:
0 (Anion Exchange Resins)
0 (Cell-Free Nucleic Acids)
0 (Guanidines)
0 (Reagent Kits, Diagnostic)
0 (Thiocyanates)
593-84-0 (guanidine thiocyanate)
9012-36-6 (Sepharose)
Entry Date(s):
Date Created: 20190824 Date Completed: 20200715 Latest Revision: 20210110
Update Code:
20240105
PubMed Central ID:
PMC6854475
DOI:
10.1016/j.jmoldx.2019.07.002
PMID:
31442674
Czasopismo naukowe
Urine cell-free DNA (cfDNA) is a valuable noninvasive biomarker for cancer mutation detection, infectious disease diagnosis (eg, tuberculosis), organ transplantation monitoring, and prenatal screening. Conventional silica DNA extraction does not efficiently capture urine cfDNA, which is dilute (ng/mL) and highly fragmented [30 to 100 nucleotides (nt)]. The clinical sensitivity of urine cfDNA detection increases with decreasing target length, motivating use of sample preparation methods designed for short fragments. We compared the analytical performance of two published protocols (Wizard resin/guanidinium thiocyanate and Q Sepharose), three commercial kits (Norgen, QIAamp, and MagMAX), and an in-house sequence-specific hybridization capture technique. Dependence on fragment length (25 to 150 nt), performance at low concentrations (10 copies/mL), tolerance to variable urine conditions, and susceptibility to PCR inhibition were characterized. Hybridization capture and Q Sepharose performed best overall (60% to 90% recovery), although Q Sepharose had reduced recovery (<10%) of the shortest 25-nt fragment. Wizard resin/guanidinium thiocyanate recovery was dependent on pH and background DNA concentration and was limited to <35%, even under optimal conditions. The Norgen kit led to consistent PCR inhibition but had high recovery of short fragments. The QIAamp and MagMAX kits had minimal recovery of fragments <150 and <80 nt, respectively. Urine cfDNA extraction methods differ widely in ability to capture short, dilute cfDNA in urine; using suboptimal methods may profoundly impair clinical results.
(Copyright © 2019 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies