Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice.

Tytuł:
Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice.
Autorzy:
Wei L; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.; Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China.; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
Zhang X; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
Wang J; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Ye Q; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Zheng X; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Peng Q; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Zheng Y; Center for Medical Research, Second Xiangya Hospital, Central South University, Changsha, China.
Liu P; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Zhang X; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Li Z; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Liu C; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.
Yan Q; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China.
Li G; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.; Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China.
Ma J; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China. .; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China. .; Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China. .; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China. .; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .
Źródło:
Oncogene [Oncogene] 2020 Jan; Vol. 39 (1), pp. 122-135. Date of Electronic Publication: 2019 Aug 28.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2002->: Basingstoke : Nature Publishing Group
Original Publication: Basingstoke, Hampshire, UK : Scientific & Medical Division, MacMillan Press, c1987-
MeSH Terms:
Lactoferrin/*genetics
Melanoma, Experimental/*genetics
Myeloid-Derived Suppressor Cells/*metabolism
Toll-Like Receptor 9/*genetics
Animals ; Apoptosis/genetics ; Cell Differentiation/genetics ; Cell Line, Tumor ; Disease Models, Animal ; Gene Expression Regulation, Neoplastic/genetics ; Heterografts ; Humans ; Immunity, Innate/genetics ; Lactoferrin/deficiency ; Lactoferrin/pharmacology ; Lung/metabolism ; Lung/pathology ; Melanoma, Experimental/pathology ; Mice ; Mice, Knockout ; Myeloid-Derived Suppressor Cells/pathology ; Neoplasm Metastasis ; Signal Transduction/genetics ; Toll-Like Receptor 9/agonists ; Tumor Microenvironment/genetics
References:
Siqueiros-Cendon T, Arevalo-Gallegos S, Iglesias-Figueroa BF, Garcia-Montoya IA, Salazar-Martinez J, Rascon-Cruz Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol Sin. 2014;35:557–566. (PMID: 247862304814036)
Legrand D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem Cell Biol. 2012;90:252–268. (PMID: 22136726)
Teng CT. Lactoferrin: the path from protein to gene. Biometals. 2010;23:359–364. (PMID: 20221787)
Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Mansson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr. 2009;49:203–217. (PMID: 19093266)
Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 2009;33:301 e301–308.
Telang S. Lactoferrin: a critical player in neonatal host defense. Nutrients. 2018;10:E1228. (PMID: 30181493)
Moreno-Exposito L, Illescas-Montes R, Melguizo-Rodriguez L, Ruiz C, Ramos-Torrecillas J, de Luna-Bertos E. Multifunctional capacity and therapeutic potential of lactoferrin. Life Sci. 2018;195:61–64. (PMID: 29307524)
Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: structure, function, denaturation and digestion. Crit Rev Food Sci Nutr. 2019;59:580–596. (PMID: 28933602)
Deng M, Zhang W, Tang H, Ye Q, Liao Q, Zhou Y, et al. Lactotransferrin acts as a tumor suppressor in nasopharyngeal carcinoma by repressing AKT through multiple mechanisms. Oncogene. 2013;32:4273–4283. (PMID: 23069661)
Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M, Tan Y, et al. Lactotransferrin: a candidate tumor suppressor-Deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer. 2008;123:2065–2072. (PMID: 18697201)
Zhang W, Fan S, Zou G, Shi L, Zeng Z, Ma J, et al. Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma. Tumour Biol. 2015;36:675–683. (PMID: 25286756)
Ye Q, Zheng Y, Fan S, Qin Z, Li N, Tang A, et al. Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice. PloS ONE. 2014;9:e103298. (PMID: 250579124110006)
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–5596. (PMID: 23420197)
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–15550. (PMID: 16199517)
Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5:3–8. (PMID: 280529915426480)
Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–220. (PMID: 47753984775398)
Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2008;14:8270–8278. (PMID: 19088044)
Condamine T, Mastio J, Gabrilovich DI. Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol. 2015;98:913–922. (PMID: 263375124661041)
Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67:9518–9527. (PMID: 17909062)
Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Investig. 2006;116:2777–2790. (PMID: 17016559)
Raber P, Ochoa AC, Rodriguez PC. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Investig. 2012;41:614–634.
Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science. 2009;326:257–263. (PMID: 197296162879337)
Martinez-Campos C, Burguete-Garcia AI, Madrid-Marina V. Role of TLR9 in oncogenic virus-produced cancer. Viral Immunol. 2017;30:98–105. (PMID: 28151089)
Won H, Moreira D, Gao C, Duttagupta P, Zhao X, Manuel E, et al. TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J Leukoc Biol. 2017;102:423–436. (PMID: 285333575505743)
Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 2011;17:1765–1775. (PMID: 21233400)
Ballas ZK, Krieg AM, Warren T, Rasmussen W, Davis HL, Waldschmidt M, et al. Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol. 2001;167:4878–4886. (PMID: 11673492)
Li HY, Li M, Luo CC, Wang JQ, Zheng N. Lactoferrin exerts antitumor effects by inhibiting angiogenesis in a HT29 human colon tumor model. J Agric Food Chem. 2017;65:10464–10472. (PMID: 29112400)
Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114:47–62.
Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS ONE. 2013;8:e74250. (PMID: 240661263774754)
Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–252. (PMID: 1927957319279573)
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–550. (PMID: 296864255998822)
Takahashi K, Ehata S, Koinuma D, Morishita Y, Soda M, Mano H, et al. Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene. 2018;37:2757–2772. (PMID: 295113495966364)
Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150:165–178. (PMID: 35280193528019)
Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349–1355. (PMID: 1882068918820689)
Yang Q, Li X, Chen H, Cao Y, Xiao Q, He Y, et al. IRF7 regulates the development of granulocytic myeloid-derived suppressor cells through S100A9 transrepression in cancer. Oncogene. 2017;36:2969–2980. (PMID: 28092673)
Castano Z, San Juan BP, Spiegel A, Pant A, DeCristo MJ, Laszewski T, et al. IL-1beta inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol. 2018;20:1084–1097. (PMID: 301545496511979)
Fang L, Wu S, Zhu X, Cai J, Wu J, He Z. et al. MYEOV functions as an amplified competing endogenous RNA in promoting metastasis by activating TGF-beta pathway in NSCLC. Oncogene. 2019;38:896–912. (PMID: 30181549)
Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-beta signaling in cancer metastasis. Acta Biochim Biophys Sin. 2018;50:121–132. (PMID: 29190313)
Wang C, Ma HX, Jin MS, Zou YB, Teng YL, Tian Z, et al. Association of matrix metalloproteinase (MMP)-2 and -9 expression with extra-gastrointestinal stromal tumor metastasis. Asian Pac J Cancer Prev. 2014;15:4187–4192. (PMID: 24935368)
Jiang J, Wang GZ, Wang Y, Huang HZ, Li WT, Qu XD. Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6. Exp Cell Res. 2018;367:81–88. (PMID: 29571949)
Kundu ST, Grzeskowiak CL, Fradette JJ, Gibson LA, Rodriguez LB, Creighton CJ, et al. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun. 2018;9:2731. (PMID: 300130696048095)
Ruffell B, Affara NI, Cottone L, Junankar S, Johansson M, DeNardo DG, et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013;27:2086–2098. (PMID: 240657393850093)
Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, et al. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone. Cancer Res. 2017;77:3144–3150. (PMID: 284282795858698)
Lee JH, Cho HS, Lee JJ, Jun SY, Ahn JH, Min JS, et al. Plasma glutamate carboxypeptidase is a negative regulator in liver cancer metastasis. Oncotarget. 2016;7:79774–79786. (PMID: 278063305340238)
Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289:17406–17415. (PMID: 248027554067173)
Uchida R, Aoki R, Aoki-Yoshida A, Tajima A, Takayama Y. Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes. Biochem Cell Biol. 2017;95:64–68. (PMID: 28165292)
Blais A, Fan C, Voisin T, Aattouri N, Dubarry M, Blachier F, et al. Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study. Biometals. 2014;27:857–874. (PMID: 25082351)
Vandrovcova M, Douglas TE, Heinemann S, Scharnweber D, Dubruel P, Bacakova L. Collagen-lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation. J Biomed Mater Res A. 2015;103:525–533. (PMID: 24737729)
Kitakaze T, Oshimo M, Kobayashi Y, Ryu M, Suzuki YA, Inui H, et al. Lactoferrin promotes murine C2C12 myoblast proliferation and differentiation and myotube hypertrophy. Mol Med Rep. 2018;17:5912–5920. (PMID: 294366845866037)
Tasli PN, Sahin F. Effect of lactoferrin on odontogenic differentiation of stem cells derived from human 3rd molar tooth germ. Appl Biochem Biotechnol. 2014;174:2257–2266. (PMID: 25173676)
Perdijk O, van Neerven RJJ, van den Brink E, Savelkoul HFJ, Brugman S. Bovine lactoferrin modulates dendritic cell differentiation and function. Nutrients. 2018;10:E848. (PMID: 29966271)
Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–179. (PMID: 18364001)
Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012;72:3125–3130. (PMID: 227218376327310)
Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006;8:1369–1375. (PMID: 17128264)
Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 2017;36:2095–2104. (PMID: 27721403)
Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell. 2008;13:23–35. (PMID: 1816733718167337)
Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010;70:6071–6082. (PMID: 206106262905495)
Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9:133–148. (PMID: 212281163078037)
Oh K, Lee OY, Shon SY, Nam O, Ryu PM, Seo MW, et al. A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model. Breast Cancer Res. 2013;15:R79. (PMID: 240210593979084)
Ortiz ML, Lu L, Ramachandran I, Gabrilovich DI. Myeloid-derived suppressor cells in the development of lung cancer. Cancer Immunol Res. 2014;2:50–58. (PMID: 24778162)
Simpson KD, Templeton DJ, Cross JV. Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J Immunol. 2012;189:5533–5540. (PMID: 231254183518629)
He YM, Li X, Perego M, Nefedova Y, Kossenkov AV, Jensen EA, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation. Nat Med. 2018;24:224–231. (PMID: 293343745803434)
Velusamy SK, Ganeshnarayan K, Markowitz K, Schreiner H, Furgang D, Fine DH, et al. Lactoferrin knockout mice demonstrates greater susceptibility to Aggregatibacter actinomycetemcomitans-induced periodontal disease. J Periodontol. 2013;84:1690–1701. (PMID: 23327622)
Velusamy SK, Poojary R, Ardeshna R, Alabdulmohsen W, Fine DH, Velliyagounder K. Protective effects of human lactoferrin during Aggregatibacter actinomycetemcomitans-induced bacteremia in lactoferrin-deficient mice. Antimicrob Agents Chemother. 2014;58:397–404. (PMID: 241892603910771)
Cen X, Liu S, Cheng K. The role of toll-like receptor in inflammation and tumor immunity. Front Pharmacol. 2018;9:878. (PMID: 301277476088210)
Maglione PJ, Simchoni N, Cunningham-Rundles C. Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci. 2015;1356:1–21. (PMID: 259309934629506)
Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5:a011247. (PMID: 232840453579400)
Hossain DM, Pal SK, Moreira D, Duttagupta P, Zhang Q, Won H, et al. TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin Cancer Res. 2015;21:3771–3782. (PMID: 259671424537814)
Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R, Xu Y, et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med. 2015;212:2077–2094. (PMID: 264816854647258)
Silvestrini MT, Ingham ES, Mahakian LM, Kheirolomoom A, Liu Y, Fite BZ, et al. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. JCI insight. 2017;2:e90521. (PMID: 283526585358490)
Fehri E, Ennaifer E, Bel Haj Rhouma R, Guizani-Tabbane L, Guizani I, Boubaker S. The role of toll-like receptor 9 in gynecologic cancer. Curr Res Transl Med. 2016;64:155–159. (PMID: 27765276)
Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018;281:57–61. (PMID: 292479965922413)
Zhang CX, Ye SB, Ni JJ, Cai TT, Liu YN, Huang DJ et al. STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion. Cell Death Differ. 2019. https://doi.org/10.1038/s41418-019-0302-0 .
Mei S, Xin J, Liu Y, Zhang Y, Liang X, Su X, et al. MicroRNA-200c promotes suppressive potential of myeloid-derived suppressor cells by modulating PTEN and FOG2 expression. PLoS ONE. 2015;10:e0135867. (PMID: 262851194540422)
Aghaeepour N, Kin C, Ganio EA, Jensen KP, Gaudilliere DK, Tingle M. et al. Deep immune profiling of an arginine-enriched nutritional intervention in patients undergoing surgery. J Immunol. 2017;199:2171–2180.
Ribechini E, Hutchinson JA, Hergovits S, Heuer M, Lucas J, Schleicher U, et al. Novel GM-CSF signals via IFN-gammaR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv. 2017;1:947–960. (PMID: 292967365737598)
Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Investig. 2018;128:5647–5662. (PMID: 30352428)
Clavijo PE, Friedman J, Robbins Y, Moore EC, Smith E, Zauderer M, et al. Semaphorin 4D inhibition improves response to immune-checkpoint blockade via attenuation of MDSC recruitment and function. Cancer Immunol Res. 2019;7:282–291. (PMID: 30514791)
Totiger TM, Srinivasan S, Jala VR, Lamichhane P, Dosch AR, Gaidarski AA 3rd, et al. Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Mol Cancer Ther. 2019;18:301–311. (PMID: 30404927)
Valenti P, Vogel HJ. Lactoferrin, all roads lead to Rome. Biometals. 2014;27:803–806. (PMID: 25156436)
Wakabayashi H, Oda H, Yamauchi K, Abe F. Lactoferrin for prevention of common viral infections. J Infect Chemother. 2014;20:666–671. (PMID: 25182867)
Substance Nomenclature:
0 (Toll-Like Receptor 9)
EC 3.4.21.- (Lactoferrin)
Entry Date(s):
Date Created: 20190830 Date Completed: 20200420 Latest Revision: 20210303
Update Code:
20240104
DOI:
10.1038/s41388-019-0970-8
PMID:
31462711
Czasopismo naukowe
Lactoferrin, an innate immunity molecule, is involved in anti-inflammatory, anti-microbial, and anti-tumor activities. We previously reported that lactoferrin is downregulated in specimens of nasopharyngeal carcinoma and negatively associated with tumor progression and metastasis of patients with nasopharyngeal carcinoma. However, the relationship between lactoferrin and the pro-metastatic microenvironment has not been reported yet. Here, by using the lactoferrin knockout mouse, we found that lactoferrin deficiency facilitated melanoma cells metastasizing to lungs, through recruiting myeloid-derived suppressor cells (MDSCs) in the lungs. Mechanistic studies showed that in the lung microenvironment of the lactoferrin knockout mice, the TLR9 signaling was the most repressed signaling. Lactoferrin can induce MDSCs differentiation and apoptosis, as well as upregulate TLR9 expression. TLR9 agonist or lactoferrin treatment can rescue this phenotype in the tumor metastasis mouse model. Our results suggest a protective role of lactoferrin in cancer metastasis, along with a deficiency in certain components of the innate immune system, may lead to a pro-metastatic tumor microenvironment.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies