Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Changing climate both increases and decreases European river floods.

Tytuł:
Changing climate both increases and decreases European river floods.
Autorzy:
Blöschl G; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria. .
Hall J; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria.
Viglione A; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria.; Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin, Italy.
Perdigão RAP; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria.
Parajka J; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria.
Merz B; Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany.
Lun D; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria.
Arheimer B; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
Aronica GT; Department of Engineering, University of Messina, Messina, Italy.
Bilibashi A; CSE - Control Systems Engineer, Renewable Energy Systems & Technology, Tirana, Albania.
Boháč M; Czech Hydrometeorological Institute, Prague, Czechia.
Bonacci O; Faculty of Civil Engineering, Architecture and Geodesy, Split University, Split, Croatia.
Borga M; Department of Land, Environment, Agriculture and Forestry, University of Padova, Padua, Italy.
Čanjevac I; Department of Geography, Faculty of Science, University of Zagreb, Zagreb, Croatia.
Castellarin A; Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Bologna, Italy.
Chirico GB; Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
Claps P; Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin, Italy.
Frolova N; Department of Land Hydrology, Lomonosov Moscow State University, Moscow, Russia.
Ganora D; Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin, Italy.
Gorbachova L; Department of Hydrological Research, Ukrainian Hydrometeorological Institute, Kiev, Ukraine.
Gül A; Department of Civil Engineering, Dokuz Eylul University, Izmir, Turkey.
Hannaford J; Centre for Ecology and Hydrology, Wallingford, UK.
Harrigan S; Forecast Department, European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK.
Kireeva M; Department of Land Hydrology, Lomonosov Moscow State University, Moscow, Russia.
Kiss A; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria.
Kjeldsen TR; Department of Architecture and Civil Engineering, University of Bath, Bath, UK.
Kohnová S; Department of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovakia.
Koskela JJ; Finnish Environment Institute, Helsinki, Finland.
Ledvinka O; Czech Hydrometeorological Institute, Prague, Czechia.
Macdonald N; Department of Geography and Planning, University of Liverpool, Liverpool, UK.; Institute of Risk and Uncertainty, University of Liverpool, Liverpool, UK.
Mavrova-Guirguinova M; University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria.
Mediero L; Department of Civil Engineering: Hydraulic, Energy and Environment, Universidad Politécnica de Madrid, Madrid, Spain.
Merz R; Department for Catchment Hydrology, Helmholtz Centre for Environmental Research (UfZ), Halle, Germany.
Molnar P; Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland.
Montanari A; Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Bologna, Italy.
Murphy C; Irish Climate Analysis and Research Units (ICARUS), Department of Geography, Maynooth University, Maynooth, Ireland.
Osuch M; Department of Hydrology and Hydrodynamics, Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland.
Ovcharuk V; Hydrometeorological Institute, Odessa State Environmental University, Odessa, Ukraine.
Radevski I; Institute of Geography, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, North Macedonia.
Salinas JL; Institute of Hydraulic Engineering and Water Resources Management, Technische Universität Wien, Vienna, Austria.
Sauquet E; Irstea, UR RiverLy, Lyon-Villeurbanne, France.
Šraj M; Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia.
Szolgay J; Department of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovakia.
Volpi E; Department of Engineering, University Roma Tre, Rome, Italy.
Wilson D; Norwegian Water Resources and Energy Directorate, Oslo, Norway.
Zaimi K; Institute of Geo-Sciences, Energy, Water and Environment (IGEWE), Polytechnic University of Tirana, Tirana, Albania.
Živković N; Faculty of Geography, University of Belgrade, Belgrade, Serbia.
Źródło:
Nature [Nature] 2019 Sep; Vol. 573 (7772), pp. 108-111. Date of Electronic Publication: 2019 Aug 28.
Typ publikacji:
Historical Article; Journal Article
Język:
English
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH Terms:
Rivers*
Climate Change/*statistics & numerical data
Floods/*statistics & numerical data
Climate Change/history ; Europe ; Floods/history ; Floods/prevention & control ; Geographic Mapping ; History, 20th Century ; History, 21st Century ; Rain ; Seasons ; Time Factors
References:
IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).
European Academies’ Science Advisory Council. Extreme Weather Events in Europe. Report No. 22 https://easac.eu/publications/details/extreme-weather-events-in-europe/ (EASAC, 2018).
Hall, J. et al. Understanding flood regime changes in Europe: a state of the art assessment. Hydrol. Earth Syst. Sci. 18, 2735–2772 (2014). (PMID: 10.5194/hess-18-2735-2014)
Kundzewicz, Z. et al. Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrol. Sci. J. 62, 1–14 (2017).
Thober, S. et al. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environ. Res. Lett. 13, 014003 (2018). (PMID: 10.1088/1748-9326/aa9e35)
Desai, B., Maskrey, A., Peduzzi, P., De Bono, A., & Herold, C. Making Development Sustainable: The Future of Disaster Risk Management. Global Assessment Report on Disaster Risk Reduction http://archive-ouverte.unige.ch/unige:78299 (UNISDR, 2015).
Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016). (PMID: 10.1038/nclimate2893)
Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017). (PMID: 10.1126/science.aan2506)
Mangini, W. et al. Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrol. Sci. J. 63, 493–512 (2018). (PMID: 10.1080/02626667.2018.1444766)
Berghuijs, W., Aalbers, E., Larsen, J., Trancoso, R. & Woods, R. Recent changes in extreme floods across multiple continents. Environ. Res. Lett. 12, 114035 (2017). (PMID: 10.1088/1748-9326/aa8847)
Hodgkins, G. A. et al. Climate-driven variability in the occurrence of major floods across North America and Europe. J. Hydrol. 552, 704–717 (2017). (PMID: 10.1016/j.jhydrol.2017.07.027)
Hall, J. et al. A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries. Proc. Int. Assoc. Hydrol. Sci. 370, 89–95 (2015).
Sivapalan, M., Blӧschl, G., Merz, R. & Gutknecht, D. Linking flood frequency to long-term water balance: incorporating effects of seasonality. Wat. Resour. Res. 41, W06012 (2005). (PMID: 10.1029/2004WR003439)
Bayliss, A. C. & Jones, R. C. Peaks-over-threshold Flood Database: Summary Statistics and Seasonality. Report No. 121 (Institute of Hydrology, 1993).
Schröter, K., Kunz, M., Elmer, F., Mühr, B. & Merz, B. What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol. Earth Syst. Sci. 19, 309–327 (2015). (PMID: 10.5194/hess-19-309-2015)
Mediero, L., Santillán, D., Garrote, L. & Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 517, 1072–1088 (2014). (PMID: 10.1016/j.jhydrol.2014.06.040)
Hall, J. & Blӧschl, G. Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci. 22, 3883–3901 (2018). (PMID: 10.5194/hess-22-3883-2018)
IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Archer, C. L. & Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 35, 08803 (2008). (PMID: 10.1029/2008GL033614)
Kang, S. M. & Lu, J. Expansion of the Hadley cell under global warming: winter versus summer. J. Clim. 25, 8387–8393 (2012). (PMID: 10.1175/JCLI-D-12-00323.1)
Amponsah, W. et al. Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods. Earth Syst. Sci. Data 10, 1783–1794 (2018). (PMID: 10.5194/essd-10-1783-2018)
Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys. Res. Lett. 42, 1165–1172 (2015). (PMID: 10.1002/2014GL062588)
Rogger, M. et al. Land use change impacts on floods at the catchment scale: challenges and opportunities for future research. Wat. Resour. Res. 53, 5209–5219 (2017). (PMID: 10.1002/2017WR020723)
Perdigão, R. A. P., Pires, C. A. L. & Hall, J. Synergistic dynamic theory of complex coevolutionary systems: disentangling nonlinear spatiotemporal controls on precipitation. Preprint at https://arxiv.org/abs/1611.03403 (2016).
Estilow, T. W., Young, A. H. & Robinson, D. A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data 7, 137–142 (2015). (PMID: 10.5194/essd-7-137-2015)
Frolova, N. L. et al. Hydrological hazards in Russia: origin, classification, changes and risk assessment. Nat. Hazards 88, 103–131 (2017). (PMID: 10.1007/s11069-016-2632-2)
Mediero, L. et al. Identification of coherent flood regions across Europe by using the longest streamflow records. J. Hydrol. (Amst.) 528, 341–360 (2015). (PMID: 10.1016/j.jhydrol.2015.06.016)
Salinas, J. L., Castellarin, A., Kohnova, S. & Kjeldsen, T. Regional parent flood frequency distributions in Europe-Part 2: climate and scale controls. Hydrol. Earth Syst. Sci. 18, 4391–4401 (2014). (PMID: 10.5194/hess-18-4391-2014)
Xoplaki, E., Gonzalez-Rouco, J. F., Luterbacher, J. & Wanner, H. Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim. Dyn. 23, 63–78 (2004). (PMID: 10.1007/s00382-004-0422-0)
Brooks, H. E. Severe thunderstorms and climate change. Atmos. Res. 123, 129–138 (2013). (PMID: 10.1016/j.atmosres.2012.04.002)
Vogt, J. et al. A pan-European River and Catchment Database. Report No. EUR 22920 (Office for Official Publications of the European Communities, 2007).
Haylock, M. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113, D20119 (2008). (PMID: 10.1029/2008JD010201)
van den Dool, H., Huang, J. & Fan, Y. Performance and analysis of the constructed analogue method applied to US soil moisture over 1981–2001. J. Geophys. Res. 108, 8617 (2003). (PMID: 10.1029/2002JD003114)
Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968). (PMID: 10.1080/01621459.1968.10480934)
Theil, H. A rank-invariant method of linear and polynomial regression analysis. Part 1. Proc. K. Ned. Akad. Wet. 53, 386–392 (1950).
Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945). (PMID: 10.2307/1907187)
Hiemstra, P. H., Pebesma, E. J., Twenhӧfel, C. J. & Heuvelink, G. B. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput. Geosci. 35, 1711–1721 (2009). (PMID: 10.1016/j.cageo.2008.10.011)
Wilcox, R. A note on the Theil-Sen regression estimator when the regressor is random and the error term is heteroscedastic. Biometrical J. 40, 261–268 (1998). (PMID: 10.1002/(SICI)1521-4036(199807)40:3<261::AID-BIMJ261>3.0.CO;2-V)
Helsel, D. R. & Frans, L. M. Regional Kendall test for trend. Environ. Sci. Technol. 40, 4066–4073 (2006). (PMID: 10.1021/es051650b)
Renard, B., Lang, M. & Bois, P. Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: case study with peak-over-threshold data. Stoch. Env. Res. Risk A. 21, 97–112 (2006). (PMID: 10.1007/s00477-006-0047-4)
Martins, E. S. & Stedinger, J. R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Wat. Resour. Res. 36, 737–744 (2000). (PMID: 10.1029/1999WR900330)
Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).
Entry Date(s):
Date Created: 20190830 Date Completed: 20200330 Latest Revision: 20220417
Update Code:
20240104
DOI:
10.1038/s41586-019-1495-6
PMID:
31462777
Czasopismo naukowe
Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere 1 . These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe 2 . Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe 3 , because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century 4,5 , suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies