Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Influence of exposure measurement errors on results from epidemiologic studies of different designs.

Tytuł:
Influence of exposure measurement errors on results from epidemiologic studies of different designs.
Autorzy:
Richmond-Bryant J; National Center for Environmental Assessment, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, 27711, USA.; Department of Forestry and Environmental Resources, North Carolina State University, 2820 Faucette Drive, Raleigh, NC, 27695-8001, USA.
Long TC; National Center for Environmental Assessment, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, 27711, USA. .
Źródło:
Journal of exposure science & environmental epidemiology [J Expo Sci Environ Epidemiol] 2020 May; Vol. 30 (3), pp. 420-429. Date of Electronic Publication: 2019 Sep 02.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Nature Pub. Group, c2006-
MeSH Terms:
Epidemiologic Studies*
Air Pollution/*statistics & numerical data
Environmental Exposure/*statistics & numerical data
Air Pollutants/analysis ; Air Pollution/analysis ; Bias ; Environmental Exposure/analysis ; Humans
References:
Clean Air Act, as amended by Pub. L. No. 101–549 (1990).
U.S. EPA. Integrated science assessment for particulate matter. EPA Report. EPA/600/R-08/139F. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment- RTP Division, 2009.
EPA U.S. Integrated science assessment for oxides of nitrogen (final report). EPA Report. EPA/600/R-15/068. Research Triangle Park, NC: U.S. Environmental Protection Agency, National Center for Environmental Assessment, 2016.
U.S. EPA. Integrated science assessment for sulfur oxides: Health criteria. EPA Report. EPA/600/R-17/451. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment-RTP, 2017.
EPA U.S. Preamble to the Integrated Science Assessments. EPA Report. EPA/600/R-15/067. Research Triangle Park, NC: National Center for EnvironmentalAssessment, Office of Research and Development, 2015.
Lipfert FW, Wyzga RE. The effects of exposure error on environmental epidemiology. In Proceedings of the 2nd Colloquium on Particulate Air Pollution and Health, Park City, UT, 1996.
Armstrong BK, White E, Saracci R. Principles of exposure measurement in epidemiology. New York, NY: Oxford Univ. Press; 1992.
Szpiro AA, Paciorek CJ, Sheppard L. Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology. 2011;22:680–5. (PMID: 10.1097/EDE.0b013e3182254cc6)
Goldman GT, Mulholland JA, Russell AG, Strickland MJ, Klein M, Waller LA, et al. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies. Environ Health. 2011;10:61. (PMID: 10.1186/1476-069X-10-61)
Reeves GK, Cox DR, Darby SC, Whitley E. Some aspects of measurement error in explanatory variables for continuous and binary regression models. Stat Med. 1998;17:2157–77. (PMID: 10.1002/(SICI)1097-0258(19981015)17:19<2157::AID-SIM916>3.0.CO;2-F)
Basagaña X, Aguilera I, Rivera M, Agis D, Foraster M, Marrugat J, et al. Measurement error in epidemiologic studies of air pollution based on land-use regression models. Am J Epidemiol. 2013;178:1342–6. (PMID: 10.1093/aje/kwt127)
Goldman GT, Mulholland JA, Russell AG, Srivastava A, Strickland MJ, Klein M, et al. Ambient air pollutant measurement error: characterization and impacts in a time-series epidemiologic study in Atlanta. Environ Sci Technol. 2010;44:7692–8. (PMID: 10.1021/es101386r)
Goldman GT, Mulholland JA, Russell AG, Gass K, Strickland MJ, Tolbert PE. Characterization of ambient air pollution measurement error in a time-series health study using a geostatistical simulation approach. Atmos Environ. 2012;57:101–8. (PMID: 10.1016/j.atmosenv.2012.04.045)
Strickland MJ, Gass KM, Goldman GT, Mulholland JA. Effects of ambient air pollution measurement error on health effect estimates in time-series studies: a simulation-based analysis. J Expo Sci Environ Epidemiol. 2013;25:160–6. (PMID: 10.1038/jes.2013.16)
Dionisio KL, Baxter LK, Chang HH. An empirical assessment of exposure measurement error and effect attenuation in bipollutant epidemiologic models. Environ Health Perspect. 2014;122:1216–24. (PMID: 10.1289/ehp.1307772)
Sheppard L, Slaughter JC, Schildcrout J, Liu JS, Lumley T. Exposure and measurement contributions to estimates of acute air pollution effects. J Expo Anal Environ Epidemiol. 2005;15:366–76. (PMID: 10.1038/sj.jea.7500413)
Butland BK, Armstrong B, Atkinson RW, Wilkinson P, Heal MR, Doherty RM, et al. Measurement error in time-series analysis: a simulation study comparing modelled and monitored data. BMC Med Res Methodol. 2013;13:136. (PMID: 10.1186/1471-2288-13-136)
Alexeeff SE, Schwartz J, Kloog I, Chudnovsky A, Koutrakis P, Coull BA. Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into spatial variability using high-resolution satellite data. J Expo Sci Environ Epidemiol. 2015;25:138–44. (PMID: 10.1038/jes.2014.40)
Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA. Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics. 2009;10:258–74. (PMID: 10.1093/biostatistics/kxn033)
Setton E, Marshall JD, Brauer M, Lundquist KR, Hystad P, Keller P, et al. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J Expo Sci Environ Epidemiol. 2011;21:42–8. (PMID: 10.1038/jes.2010.14)
Szpiro AA, Paciorek CJ. Measurement error in two-stage analyses, with application to air pollution epidemiology. Environmetrics. 2013;24:501–17. (PMID: 10.1002/env.2233)
Bergen S, Sheppard L, Sampson PD, Kim SY, Richards M, Vedal S, et al. A national prediction model for PM2.5 component exposures and measurement error-corrected health effect inference. Environ Health Perspect. 2013;121:1017–25. (PMID: 10.1289/ehp.1206010)
Bergen S, Szpiro AA. Mitigating the impact of measurement error when using penalized regression to model exposure in two-stage air pollution epidemiology studies. Environ Ecol Stat. 2015;22:601–31. (PMID: 10.1007/s10651-015-0314-y)
Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine R, Wilson RB, et al. AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization. J Appl Meteorol. 2005;44:682–93. (PMID: 10.1175/JAM2227.1)
Cefalu M, Dominici F. Does exposure prediction bias health-effect estimation? The relationship between confounding adjustment and exposure prediction. Epidemiology. 2014;25:583–90. (PMID: 10.1097/EDE.0000000000000099)
Contributed Indexing:
Keywords: Criteria pollutants; Epidemiology; Exposure modeling
Substance Nomenclature:
0 (Air Pollutants)
Entry Date(s):
Date Created: 20190904 Date Completed: 20201208 Latest Revision: 20210119
Update Code:
20240104
DOI:
10.1038/s41370-019-0164-z
PMID:
31477780
Czasopismo naukowe
In epidemiologic studies of health effects of air pollution, measurements or models are used to estimate exposure. Exposure estimates have errors that propagate to effect estimates in exposure-response models. We critically evaluate how types of exposure measurement error influenced bias and precision of effect estimates to understand conditions affecting interpretation of exposure-response models for epidemiologic studies of exposure to PM 2.5 , NO 2 , and SO 2 . We reviewed available literature on exposure measurement error for time-series and long-term exposure epidemiology studies. For time-series studies, time-activity error (daily exposure concentration did not account for variation in exposure due to time-activity during a day) and nonambient (indoor) sources negatively biased the effect estimates and increased standard error, so uncertainty grew with increasing bias while underestimating the true health effect in these studies. Spatial error (deviation between true exposure concentration at an individual's location and concentration at a receptor) was ascribed to negatively biased effect estimates in most cases. Positive bias occurred for spatially variable pollutants when the variance of error correlated with the exposure estimate. For long-term exposure studies, most spatial errors did not bias the effect estimate. For both time-series and long-term exposure studies reviewed, large uncertainties were observed when exposure concentration was modeled with low spatial and temporal resolution for a spatially variable pollutant.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies