Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Intermobility of barium, strontium, and lead in chloride and sulfate leach solutions.

Tytuł:
Intermobility of barium, strontium, and lead in chloride and sulfate leach solutions.
Autorzy:
Rollog M; School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia. .
Cook NJ; School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
Guagliardo P; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
Ehrig K; BHP Olympic Dam, 55 Grenfell St., Adelaide, SA, 5000, Australia.
Gilbert SE; Adelaide Microscopy, The University of Adelaide, Adelaide, SA, 5005, Australia.
Kilburn M; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
Źródło:
Geochemical transactions [Geochem Trans] 2019 Sep 05; Vol. 20 (1), pp. 4. Date of Electronic Publication: 2019 Sep 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: [London, United Kingdom] : BioMed Central
Original Publication: Cambridge : Published by the Royal Society of Chemistry in collaboration with the Division of Geochemistry of the American Chemical Society, 2000-
References:
Environ Sci Technol. 2009 Feb 1;43(3):777-82. (PMID: 19245016)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
Environ Sci Technol. 2014 Apr 15;48(8):4596-603. (PMID: 24670034)
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. (PMID: 26153368)
Grant Information:
IH130200033 Australian Research Council
Contributed Indexing:
Keywords: Alkali earth sulfates; Cation intermobility; NanoSIMS analysis; Radionuclides; Sulfate leaching
Entry Date(s):
Date Created: 20190906 Latest Revision: 20201001
Update Code:
20240105
PubMed Central ID:
PMC6743140
DOI:
10.1186/s12932-019-0064-0
PMID:
31486989
Czasopismo naukowe
Production of radionuclide-free copper concentrates is dependent on understanding and controlling the deportment of daughter radionuclides (RNs) produced from 238 U decay, specifically 226 Ra, 210 Pb, and 210 Po. Sulfuric acid leaching is currently employed in the Olympic Dam processing plant (South Australia) to remove U and fluorine from copper concentrates prior to smelting but does not adequately remove the aforementioned RN. Due to chemical similarities between lead and alkaline earth metals (including Ra), two sets of experiments were designed to understand solution interactions between Sr, Ba, and Pb at various conditions. Nanoscale secondary ion mass spectrometry (NanoSIMS) isotopic spatial distribution maps and laser ablation inductively coupled-plasma mass spectrometry transects were performed on laboratory-grown crystals of baryte, celestite, and anglesite which had been exposed to different solutions under different pH and reaction time conditions. Analysis of experimental products reveals three uptake mechanisms: overgrowth of nearly pure SrSO 4 and PbSO 4 on baryte; incorporation of minor of Pb and Ba into celestite due to diffusion; and extensive replacement of Pb by Sr (and less extensive replacement of Pb by Ba) in anglesite via coupled dissolution-reprecipitation reactions. The presence of H 2 SO 4 either enhanced or inhibited these reactions. Kinetic modelling supports the experimental results, showing potential for extrapolating the (Sr, Ba, Pb)SO 4 system to encompass RaSO 4 . Direct observation of grain-scale element distributions by nanoSIMS aids understanding of the controlling conditions and mechanisms of replacement that may be critical steps for Pb and Ra removal from concentrates by allowing construction of a cationic replacement scenario targeting Pb or Ra, or ideally all insoluble sulfates. Experimental results provide a foundation for further investigation of RN uptake during minerals processing, especially during acid leaching. The new evidence enhances understanding of micro- to nanoscale chemical interactions and not only aids determination of where radionuclides reside during each processing stage but also guides development of flowsheets targeting their removal.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies