Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Ultra-thin sectioning and grinding of epoxy plastinated tissue.

Tytuł:
Ultra-thin sectioning and grinding of epoxy plastinated tissue.
Autorzy:
Sora MC; Centre for Anatomy and Molecular Medicine, Sigmund Freud University Vienna, Vienna, Austria.
von Horst C; HC Biovision, Mainburg, Germany.
López-Albors O; Department Anatomy and Comparative Pathological Anatomy, University of Murcia, Murcia, Spain.
Latorre R; Department Anatomy and Comparative Pathological Anatomy, University of Murcia, Murcia, Spain.
Źródło:
Anatomia, histologia, embryologia [Anat Histol Embryol] 2019 Nov; Vol. 48 (6), pp. 564-571. Date of Electronic Publication: 2019 Sep 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Berlin : Wiley-Blackwell
Original Publication: Berlin, Parey.
MeSH Terms:
Anatomy/*methods
Microtomy/*methods
Plastination/*methods
Animals ; Epoxy Resins ; Humans ; Microtomy/instrumentation ; Staining and Labeling/methods
References:
Chen, S., Wang, H., Fong, A. H., & Zhang, M. (2012). Micro-CT visualization of the cricothyroid joint cavity in cadavers. Laryngoscope, 122(3), 614-621. https://doi.org/10.1002/lary.22504.
Eckel, H. E., Sittel, C., Walger, M., Sprinzl, G., & Koebke, J. (1993). Plastination: A new approach to morphological research and instruction with excised larynges. Annals of Otology, Rhinology and Laryngology, 102(9), 660-665. https://doi.org/10.1177/000348949310200902.
Fasel, J., Mohler, R., & Lehmann, B. (1988). A technical note for improvement of the E12 technique. Journal of the International Society for Plastination, 2, 4-7.
Feil, P., & Sora, M.-C. (2014). A 3D reconstruction model of female pelvic floor by using plastinated cross sections. Austin Journal of Anatomy, 1(5), 1022.
Fritsch, H. (1996). Sectional anatomy of connective tissue structures in the hindfoot of the newborn child and the adult. The Anatomical Record, 246(3), 147-154. https://doi.org/10.1002/(SICI)1097-0185(199609)246:1<147:AID-AR16>3.0.CO;2-P.
Fritsch, H., & Hegemann, L. (1991). Simplification of the production of plastination histologic preparations through the use of a grinding machine. Anatomischer Anzeiger, 173(3), 161-165.
Fritsch, H., Lienemann, A., Brenner, E., & Ludwikowski, B. (2004). Clinical anatomy of the pelvic floor. Advances in Anatomy, Embryology, and Cell Biology, 175, III-IX, 1-64.
Fritsch, H., Pinggera, G. M., Lienemann, A., Mitterberger, M., Bartsch, G., & Strasser, H. (2006). What are the supportive structures of the female urethra? Neurourology and Urodynamics, 25(2), 128-134. https://doi.org/10.1002/nau.20133.
Gruber, H., Brenner, E., Schmitt, O., & Fritsch, H. (2001). The different growth zones of the fetal foot. Annals of Anatomy, 183(3), 267-273. https://doi.org/10.1016/S0940-9602(01)80232-6.
Hotz, G., Glide, H., Mannl, R., & Honer, T. H. (1991). Plastination of granular hydroxylapatite and attached tissue. Journal of the International Society for Plastination, 5, 7-10 & 22.
Notermans, H. P., Rath, B., Knifka, J., & Koebke, J. (2002). Klinisch anatomische Serienschnittuntersuchungen mit der Technik der sekundären Scheibenplastination. XIX. Fortbildungsveranstaltung für medizinische Präparatoren und Sektionsassistenten, München.
Phillips, M., Nash, L., Barnet, R., Nicholson, H., & Zhang, M. (2002). the use of confocal microscopy for the examination of E12 sheet plastinated human tissue. Journal of the International Society for Plastination, 17, 5.
Prymka, M., Wu, L., Hahne, H. J., Koebke, J., & Hassenpflug, J. (2006). The dimensional accuracy for preparation of the femoral cavity in HIP arthroplasty. A comparison between manual- and robot-assisted implantation of hip endoprosthesis stems in cadaver femurs. Archives of Orthopaedic and Trauma Surgery, 126(1), 36-44. https://doi.org/10.1007/s00402-005-0080-7.
Qiu, M. G., Zhang, S. X., Liu, Z. J., Tan, L. W., Wang, Y. S., Deng, J. H., & Tang, Z. S. (2003). Plastination and computerized 3D reconstruction of the temporal bone. Clinical Anatomy (New York, N.Y.), 16(4), 300-303. https://doi.org/10.1002/ca.10076.
Qiu, M. G., Zhang, S. X., Liu, Z. J., Tan, L. W., Wang, Y. S., Deng, J. H., & Tang, Z. S. (2004). Three-dimensional computational reconstruction of lateral skull base with plastinated slices. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 278(1), 437-442. https://doi.org/10.1002/ar.a.20023.
Sha, Y., Zhang, S.-X., Liu, Z.-J., Tan, L.-W., Wu, X.-Y., Wan, Y.-S., … Tang, Z.-S. (2001). Computerized 3D-reconstructions of the ligaments of the lateral aspect of ankle and subtalar joints. Surgical Radiology Anatomy, 23(2), 111-114. https://doi.org/10.1007/s00276-001-0111-1.
Sora, M. C. (2004). High temperature E 12 plastination to produce ultra-thin sheets. Journal of the International Society for Plastination, 19, 22-25.
Sora, M. C., Brugger, P. C., & Strobl, B. (2002). Shrinkage during E12 plastination. Journal of International Society for Plastination, 17, 23-27.
Sora, M., & Cook, P. (2007). Epoxy plastination of biological tissue: E12 technique. Journal of the International Society for Plastination, 22, 9.
Sora, M. C., Genser-Strobl, B., Radu, J., & Lozanoff, S. (2007). Three-dimensional reconstruction of the ankle by means of ultrathin slice plastination. Clinical Anatomy, 20(2), 196-200. https://doi.org/10.1002/ca.20335.
Sora, M. C., Jilavu, R., & Matusz, P. (2012). Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations. Surgical Radiologic Anatomy, 34(8), 731-736. https://doi.org/10.1007/s00276-011-0862-2.
von Hagens, G. (1986). Heidelberg plastination folder: Collections of technical leaflets for plastination. Heidelberg, Germany: Biodur Products.
von Horst, C. (2004). Verfahren zur Herstellung anatomischer Präparate. Patent DE102004021911A1.
von Horst, C. (2018). Hands-on plastination specimens for anatomy teaching. Anatomia, Histologia, Embryologia, 47(S1), 80. https://doi.org/10.1111/ahe.12369.
von Horst, C., & Henry, R. W. (2008). Enabling sheet plastination with minimum effort and equipment. Journal of the International Society for Plastination, 23, 47.
Windisch, G., & Weiglein, A. (2001). Anatomy of synovial sheaths in the talocrural region evaluated by sheet plastination. Journal of the International Society for Plastination, 16, 19-22.
Yucel, S., & Baskin, L. S. (2004). An anatomical description of the male and female urethral sphincter complex. The Journal of Urology, 171(5), 1890-1897. https://doi.org/10.1097/01.ju.0000124106.16505.df.
Contributed Indexing:
Keywords: education; plastination; sectional anatomy
Substance Nomenclature:
0 (Epoxy Resins)
Entry Date(s):
Date Created: 20190906 Date Completed: 20200323 Latest Revision: 20200323
Update Code:
20240105
DOI:
10.1111/ahe.12478
PMID:
31487077
Czasopismo naukowe
With classical sheet plastination techniques such as E12, the level and thickness of the freeze-cut sections decide on what is visible in the final sheet plastinated sections. However, there are other plastination techniques available where we can look for specific anatomical structures through the thickness of the tissue. These techniques include sectioning and grinding of plastinated tissue blocks or thick slices. The ultra-thin E12 technique, unlike the classic E12 technique, starts with the plastination of a large tissue block. High temperatures (30-60°C) facilitate the vacuum-forced impregnation by decreasing the viscosity of the E12 and increasing the vapour pressure of the intermediary solvent. By sectioning the cured tissue block with a diamond band saw plastinated sections with a thickness of <300 μm can be obtained. The thickness of plastinated sections can be further reduced by grinding. Resulting sections of <100 µm are suitable for histological staining and microscopic studies. Anatomical structures of interest in thick plastinate slices can be followed by variable manual grinding in a method referred to as Tissue Tracing Technique (TTT). In addition, the tissue thickness can be adapted to the transparency or darkness of tissue types in different regions of the same plastinated section. The aim of this study was to evaluate the advantages of techniques based on sectioning and grinding of plastinated tissue (E12 ultra-thin and TTT) compared to conventional sheet-forming techniques (E12).
(© 2019 Blackwell Verlag GmbH.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies