Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Serotonin exerts a direct modulatory role on bladder afferent firing in mice.

Tytuł:
Serotonin exerts a direct modulatory role on bladder afferent firing in mice.
Autorzy:
Konthapakdee N; Department of Physiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
Grundy L; Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
O'Donnell T; Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
Garcia-Caraballo S; Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
Brierley SM; Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
Grundy D; Department of Biomedical Science, University of Sheffield, Sheffield, UK.
Daly DM; University of Central Lancashire, Preston, UK.
Źródło:
The Journal of physiology [J Physiol] 2019 Nov; Vol. 597 (21), pp. 5247-5264. Date of Electronic Publication: 2019 Oct 13.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Oxford : Blackwell : Cambridge Univ. Press
Original Publication: London, Cambridge Univ. Press.
MeSH Terms:
Afferent Pathways/*metabolism
Neurons, Afferent/*metabolism
Serotonin/*metabolism
Urinary Bladder/*metabolism
Afferent Pathways/drug effects ; Animals ; Colon/drug effects ; Colon/metabolism ; Disease Models, Animal ; Female ; Ganglia, Spinal/drug effects ; Ganglia, Spinal/metabolism ; Granisetron/pharmacology ; Irritable Bowel Syndrome/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/metabolism ; Neurons, Afferent/drug effects ; Peripheral Nervous System/drug effects ; Peripheral Nervous System/metabolism ; Receptors, Serotonin, 5-HT3/metabolism ; Serotonin Antagonists/pharmacology ; Serotonin Plasma Membrane Transport Proteins/metabolism ; Trinitrobenzenesulfonic Acid/pharmacology ; Urinary Bladder/drug effects
References:
Aaron LA & Buchwald D (2001). A review of the evidence for overlap among unexplained clinical conditions. Ann Intern Med 134, 868-881.
Ahn J, Saltos TM, Tom VJ & Hou S (2018). Transsynaptic tracing to dissect supraspinal serotonergic input regulating the bladder reflex in rats. Neurourol Urodyn 37, 2487-2494.
Antoniou E, Margonis GA, Angelou V, Pikouli A, Argiri P, Karavokyros I, Papalois A & Pikoulis E (2016). The TNBS-induced colitis animal model: An overview. Ann Med Surg (Lond) 11, 9-15.
Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C, O'Donnell TA, Brierley SM, Ingraham HA & Julius D (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185-198.e16.
Berger M, Gray JA & Roth BL (2009). The expanded biology of serotonin. Annu Rev Med 60, 355-366.
Brierley SM & Linden DR (2014). Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 11, 611-627.
Brumovsky PR & Gebhart GF (2010). Visceral organ cross-sensitization - an integrated perspective. Auton Neurosci 153, 106-115.
Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams DJ & Brierley SM (2017). α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut 66, 1083-1094.
Chetty N, Coupar IM, Chess-Williams R & Kerr KP (2007). Demonstration of 5-HT3 receptor function and expression in the mouse bladder. Naunyn Schmiedebergs Arch Pharmacol 375, 359-368.
Christianson JA, Liang R, Ustinova EE, Davis BM, Fraser MO & Pezzone MA (2007). Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain 128, 235-243.
Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H, Crowell MD, Sharkey KA, Gershon MD, Mawe GM & Moses PL (2004). Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126, 1657-1664.
Coelho A, Oliveira R, Cavaleiro H, Cruz CD & Cruz F (2018). Evidence for an urethro-vesical crosstalk mediated by serotonin. Neurourol Urodyn 37, 2389-2397.
Daly D & Chapple C (2013). Relationship between overactive bladder (OAB) and irritable bowel syndrome (IBS): concurrent disorders with a common pathophysiology? BJU Int 111, 530-531.
Daly DM, Nocchi L, Liaskos M, McKay NG, Chapple C & Grundy D (2014). Age-related changes in afferent pathways and urothelial function in the male mouse bladder. J Physiol 592, 537-549.
Daly D, Rong W, Chess-Williams R, Chapple C & Grundy D (2007). Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J Physiol 583, 663-674.
de Araujo AD, Mobli M, Castro J, Harrington AM, Vetter I, Dekan Z, Muttenthaler M, Wan J, Lewis RJ, King GF, Brierley SM & Alewood PF (2014). Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nat Commun 5, 3165.
Dwyer DF, Barrett NA, Austen KF; Immunological Genome Project Consortium (2016). Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol 17, 878-887.
Fitzgerald JJ, Ustinova E, Koronowski KB, de Groat WC & Pezzone MA (2013). Evidence for the role of mast cells in colon-bladder cross organ sensitization. Auton Neurosci 173, 6-13.
Gabella G & Davis C (1998). Distribution of afferent axons in the bladder of rats. J Neurocytol 27, 141-155.
Gershon MD & Tack J (2007). The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397-414.
Glennon RA, Lee M, Rangisetty JB, Dukat M, Roth BL, Savage JE, McBride A, Rauser L, Hufeisen S & Lee DK (2000). 2-Substituted tryptamines: agents with selectivity for 5-HT6 serotonin receptors. J Med Chem 43, 1011-1018.
Grundy D (2008). 5-HT system in the gut: roles in the regulation of visceral sensitivity and motor functions. Eur Rev Med Pharmacol Sci 12(Suppl 1), 63-67.
Grundy D (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. J Physiol 593, 2547-2549.
Grundy L & Brierley SM (2018). Cross-organ sensitization between the colon and bladder: to pee or not to pee? Am J Physiol Gastrointest Liver Physiol 314, G301-G308.
Grundy L, Chess-Williams R, Brierley SM, Mills K, Moore KH, Mansfield K, Rose'Meyer R, Sellers D & Grundy D (2018a). NKA enhances bladder-afferent mechanosensitivity via urothelial and detrusor activation. Am J Physiol Renal Physiol 315, F1174-F1185.
Grundy L, Erickson A & Brierley SM (2019). Visceral Pain. Annu Rev Physiol 81, 261-284.
Grundy L, Harrington AM, Castro J, Garcia-Caraballo S, Deiteren A, Maddern J, Rychkov GY, Ge P, Peters S, Feil R, Miller P, Ghetti A, Hannig G, Kurtz CB, Silos-Santiago I & Brierley SM (2018b). Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight 3, 121841.
Hall JD, DeWitte C, Ness TJ & Robbins MT (2015). Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism. Neurosci Lett 604, 97-102.
Hattori T, Lluel P, Rouget C, Rekik M & Yoshiyama M (2017). Ketanserin and naftopidil enhance the potentiating effect of alpha-methyl-serotonin on the neurally-induced contraction of human isolated urinary bladder muscle strips. Int Neurourol J 21, 20-28.
Hughes PA, Brierley SM & Blackshaw LA (2009). Post-inflammatory modification of colonic afferent mechanosensitivity. Clin Exp Pharmacol Physiol 36, 1034-1040.
Keating C, Beyak M, Foley S, Singh G, Marsden C, Spiller R & Grundy D (2008). Afferent hypersensitivity in a mouse model of post-inflammatory gut dysfunction: role of altered serotonin metabolism. J Physiol 586, 4517-4530.
Kodama M & Takimoto Y (2000). Influence of 5-hydroxytryptamine and the effect of a new serotonin receptor antagonist (sarpogrelate) on detrusor smooth muscle of streptozotocin-induced diabetes mellitus in the rat. Int J Urol 7, 231-235.
Kullmann FA, Chang HH, Gauthier C, McDonnell BM, Yeh JC, Clayton DR, Kanai AJ, de Groat WC, Apodaca GL & Birder LA (2018). Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol (Oxf) 222, e12919.
Linden DR, Chen JX, Gershon MD, Sharkey KA & Mawe GM (2003). Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 285, G207-G216.
Linden DR, Foley KF, McQuoid C, Simpson J, Sharkey KA & Mawe GM (2005). Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. Neurogastroenterol Motil 17, 565-574.
Malykhina AP (2007). Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 149, 660-672.
Malykhina AP, Qin C, Greenwood-van Meerveld B, Foreman RD, Lupu F & Akbarali HI (2006). Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk. Neurogastroenterol Motil 18, 936-948.
Matsumoto-Miyai K, Yamada E, Shinzawa E, Koyama Y, Shimada S, Yoshizumi M & Kawatani M (2016). Serotonergic regulation of distention-induced ATP release from the urothelium. Am J Physiol Renal Physiol 310, F646-F655.
McCorvy JD & Roth BL (2015). Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 150, 129-142.
Mittra S, Malhotra S, Naruganahalli KS & Chugh A (2007). Role of peripheral 5-HT1A receptors in detrusor over activity associated with partial bladder outlet obstruction in female rats. Eur J Pharmacol 561, 189-193.
Motavallian A, Minaiyan M, Rabbani M, Andalib S & Mahzouni P (2013). Involvement of 5HT3 receptors in anti-inflammatory effects of tropisetron on experimental tnbs-induced colitis in rat. Bioimpacts 3, 169-176.
Motavallian-Naeini A, Minaiyan M, Rabbani M & Mahzuni P (2012). Anti-inflammatory effect of ondansetron through 5-HT3 receptors on TNBS-induced colitis in rat. EXCLI J 11, 30-44.
Nicholson R, Small J, Dixon AK, Spanswick D & Lee K (2003). Serotonin receptor mRNA expression in rat dorsal root ganglion neurons. Neurosci Lett 337, 119-122.
Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, Castro J, Garcia-Caraballo S, Grundy L, Rychkov GY, Weyer AD, Dekan Z, Undheim EA, Alewood P, Stucky CL, Brierley SM, Basbaum AI, Bosmans F, King GF & Julius D (2016). Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 534, 494-499.
Qin C, Malykhina AP, Akbarali HI & Foreman RD (2005). Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology 129, 1967-1978.
Rekik M, Lluel P & Palea S (2011). 5-Hydroxytryptamine potentiates neurogenic contractions of rat isolated urinary bladder through both 5-HT7 and 5-HT2C receptors. Eur J Pharmacol 650, 403-410.
Spencer NJ, Greenheigh S, Kyloh M, Hibberd TJ, Sharma H, Grundy L, Brierley SM, Harrington AM, Beckett EA, Brookes SJ & Zagorodnyuk VP (2018). Identifying unique subtypes of spinal afferent nerve endings within the urinary bladder of mice. J Comp Neurol 526, 707-720.
Su X & Gebhart GF (1998). Mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat are polymodal in character. J Neurophysiol 80, 2632-2644.
Weitzman G, Galli SJ, Dvorak AM & Hammel I (1985). Cloned mouse mast cells and normal mouse peritoneal mast cells. Determination of serotonin content and ability to synthesize serotonin in vitro. Int Arch Allergy Appl Immunol 77, 189-191.
Yoshida A, Yamashita S, Kaibara M, Taniyama K & Tanaka N (2002). 5-Hydroxytryptamine receptors, especially the 5-HT4 receptor, in guinea pig urinary bladder. Jpn J Pharmacol 89, 349-355.
Zagorodnyuk VP, Costa M & Brookes SJ (2006). Major classes of sensory neurons to the urinary bladder. Auton Neurosci 126-127, 390-397.
Zagorodnyuk VP, Gibbins IL, Costa M, Brookes SJ & Gregory SJ (2007). Properties of the major classes of mechanoreceptors in the guinea pig bladder. J Physiol 585, 147-163.
Contributed Indexing:
Keywords: 5-HT; afferent; bladder; serotonin; visceral hypersensitivity
Substance Nomenclature:
0 (Receptors, Serotonin, 5-HT3)
0 (Serotonin Antagonists)
0 (Serotonin Plasma Membrane Transport Proteins)
333DO1RDJY (Serotonin)
8T3HQG2ZC4 (Trinitrobenzenesulfonic Acid)
WZG3J2MCOL (Granisetron)
Entry Date(s):
Date Created: 20190915 Date Completed: 20200908 Latest Revision: 20200908
Update Code:
20240105
DOI:
10.1113/JP278751
PMID:
31520534
Czasopismo naukowe
Key Points: Functional disorders (i.e. interstitial cystitis/painful bladder syndrome and irritable bowel syndrome) are associated with hyperexcitability of afferent nerves innervating the urinary tract and the bowel, respectively. Various non-5-HT 3 receptor mRNA transcripts are expressed in mouse urothelium and exert functional responses to 5-HT. Whilst 5-HT 3 receptors were not detected in mouse urothelium, 5-HT 3 receptors expressed on bladder sensory neurons plays a role in bladder afferent excitability both under normal conditions and in a mouse model of chronic visceral hypersensitivity. These data suggest that the role 5-HT 3 receptors play in bladder afferent signalling warrants further study as a potential therapeutic target for functional bladder disorders.
Abstract: Serotonin (5-HT) is an excitatory mediator that in the gastrointestinal (GI) tract plays a physiological role in gut-brain signalling and is dysregulated in functional GI disorders such as irritable bowel syndrome (IBS). Patients suffering from IBS frequently suffer from urological symptoms characteristic of interstitial cystitis/painful bladder syndrome, which manifests due to cross-sensitization of shared innervation pathways between the bladder and colon. However, a direct modulatory role of 5-HT in bladder afferent signalling and its role in colon-bladder neuronal crosstalk remain elusive. The aim of this study was to investigate the action of 5-HT on bladder afferent signalling in normal mice and mice with chronic visceral hypersensitivity (CVH) following trinitrobenzenesulfonic acid-induced colitis. Bladder afferent activity was recorded directly using ex vivo afferent nerve recordings. Expression of 14 5-HT receptor subtypes, the serotonin transporter (SERT) and 5-HT-producing enzymes was determined in the urothelium using RT-PCR. Retrograde labelling of bladder-projecting dorsal root ganglion neurons was used to investigate expression of 5-HT 3 receptors using single cell RT-PCR, while sensory neuronal and urothelial responses to 5-HT were determined by live cell calcium imaging. 5-HT elicited bladder afferent firing predominantly via 5-HT 3 receptors expressed on afferent terminals. CVH animals showed a downregulation of SERT mRNA expression in urothelium, suggesting increased 5-HT bioavailability. Granisetron, a 5-HT 3 antagonist, reversed bladder afferent hypersensitivity in CVH mice. These data suggest 5-HT exerts a direct effect on bladder afferents to enhance signalling. 5-HT 3 antagonists could therefore be a potential therapeutic target to treat functional bladder and bowel disorders.
(© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.)
Comment in: J Physiol. 2020 Jan;598(1):23-24. (PMID: 31715639)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies