Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Skin tissue dielectric constant in women with high body fat content.

Tytuł:
Skin tissue dielectric constant in women with high body fat content.
Autorzy:
Mayrovitz HN; College of Medical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida.
Forbes J; KCP College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida.
Vemuri A; KCP College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida.
Krolick K; KCP College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida.
Rubin S; KCP College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida.
Źródło:
Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI) [Skin Res Technol] 2020 Mar; Vol. 26 (2), pp. 226-233. Date of Electronic Publication: 2019 Sep 25.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <1998-> : Oxford : Blackwell
Original Publication: Copenhagen, Denmark ; Cambridge, MA : Munksgaard, c1995-
MeSH Terms:
Electric Impedance*
Skin Physiological Phenomena*
Adipose Tissue/*physiology
Skin/*chemistry
Adult ; Aged ; Body Water/physiology ; Female ; Humans ; Middle Aged ; Young Adult
References:
Koehler LA, Mayrovitz HN. Spatial and temporal variability of upper extremity edema measures after breast cancer surgery. Lymphat Res Biol. 2018;17(3):308-315.
Bakar Y, Tugral A, Uyeturk U. Measurement of local tissue water in patients with breast cancer-related lymphedema. Lymphat Res Biol. 2018;16:160-164.
Mayrovitz HN, Weingrad DN, Lopez L. Assessing localized skin-to-fat water in arms of women with breast cancer via tissue dielectric constant measurements in pre- and post-surgery patients. Ann Surg Oncol. 2015;22:1483-1489.
Mayrovitz HN, Davey S, Shapiro E. Local tissue water assessed by tissue dielectric constant: anatomical site and depth dependence in women prior to breast cancer treatment-related surgery. Clin Physiol Funct Imaging. 2008;28:337-342.
Mayrovitz HN. Assessing local tissue edema in postmastectomy lymphedema. Lymphology. 2007;40:87-94.
Tugral A, Viren T, Bakar Y. Tissue dielectric constant and circumference measurement in the follow-up of treatment-related changes in lower-limb lymphedema. Int Angiol. 2018;37:26-31.
Pigott A, Nixon J, Fleming J, Porceddu S. Head and neck lymphedema management: evaluation of a therapy program. Head Neck. 2018;40:1131-1137.
Mayrovitz HN, Volosko I, Sarkar B, Pandya N. Arm, leg, and foot skin water in persons with diabetes mellitus (DM) in relation to HbA1c assessed by tissue dielectric constant (TDC) technology measured at 300 MHz. J Diabetes Sci Technol. 2017;11:584-589.
Mayrovitz HN, McClymont A, Pandya N. Skin tissue water assessed via tissue dielectric constant measurements in persons with and without diabetes mellitus. Diabetes Technol Ther. 2013;15:60-65.
Harrow JJ, Mayrovitz HN. Subepidermal moisture surrounding pressure ulcers in persons with a spinal cord injury: a pilot study. J Spinal Cord Med. 2014;37:719-728.
Birkballe S, Jensen MR, Noerregaard S, Gottrup F, Karlsmark T. Can tissue dielectric constant measurement aid in differentiating lymphoedema from lipoedema in women with swollen legs? Br J Dermatol. 2014;170:96-102.
Johansson K, Hayes S, Speck RM, Schmitz KH. Water-based exercise for patients with chronic arm lymphedema: a randomized controlled pilot trial. Am J Phys Med Rehabil. 2013;92:312-319.
Petaja L, Nuutinen J, Uusaro A, Lahtinen T, Ruokonen E. Dielectric constant of skin and subcutaneous fat to assess fluid changes after cardiac surgery. Physiol Meas. 2003;24:383-390.
Laaksonen DE, Nuutinen J, Lahtinen T, Rissanen A, Niskanen LK. Changes in abdominal subcutaneous fat water content with rapid weight loss and long-term weight maintenance in abdominally obese men and women. Int J Obes Relat Metab Disord. 2003;27:677-683.
Lahtinen T, Nuutinen J, Alanen E, et al. Quantitative assessment of protein content in irradiated human skin. Int J Radiat Oncol Biol Phys. 1999;43:635-638.
Mayrovitz HN. Impact of body fat and obesity on tissue dielectric constant (TDC) as a method to assess breast cancer treatment related lymphedema (BCRL). Lymphology. 2019;52(1):18-24.
Dean LT, Kumar A, Kim T, et al. Race or resource? BMI, race, and other social factors as risk factors for interlimb differences among overweight breast cancer survivors with lymphedema. J Obes. 2016;2016:8241710.
Jammallo LS, Miller CL, Singer M, et al. Impact of body mass index and weight fluctuation on lymphedema risk in patients treated for breast cancer. Breast Cancer Res Treat. 2013;142:59-67.
Greene AK, Grant FD, Slavin SA. Lower-extremity lymphedema and elevated body-mass index. N Engl J Med. 2012;366:2136-2137.
Ridner SH, Dietrich MS, Stewart BR, Armer JM. Body mass index and breast cancer treatment-related lymphedema. Support Care Cancer. 2011;19:853-857.
Wu R, Huang X, Dong X, Zhang H, Zhuang L. Obese patients have higher risk of breast cancer-related lymphedema than overweight patients after breast cancer: a meta-analysis. Ann Transl Med. 2019;7:172.
Mayrovitz HN, Mahtani SA, Pitts E, Michaelos L. Race-related differences in tissue dielectric constant measured noninvasively at 300 MHz in male and female skin at multiple sites and depths. Skin Res Technol. 2017;23:471-478.
Mayrovitz HN, Singh A, Akolkar S. Age-related differences in tissue dielectric constant values of female forearm skin measured noninvasively at 300 MHz. Skin Res Technol. 2016;22:189-195.
Mayrovitz HN, Weingrad DN, Lopez L. Patterns of temporal changes in tissue dielectric constant as indices of localized skin water changes in women treated for breast cancer: a pilot study. Lymphat Res Biol. 2015;13:20-32.
Mayrovitz HN, Weingrad DN, Davey S. Tissue dielectric constant (TDC) measurements as a means of characterizing localized tissue water in arms of women with and without breast cancer treatment related lymphedema. Lymphology. 2014;47:142-150.
Pezner RD, Patterson MP, Hill LR, et al. Arm lymphedema in patients treated conservatively for breast cancer: relationship to patient age and axillary node dissection technique. Int J Radiat Oncol Biol Phys. 1986;12:2079-2083.
Sartorio A, Lafortuna C, Pera F, Vangeli V, Fumagalli E, Bedogni G. Short-term effects of exercise on body water distribution of severely obese subjects as determined by bioelectrical impedance analysis. Diabetes Nutr Metab. 2002;15:252-255.
Sartorio A, Malavolti M, Agosti F, et al. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr. 2005;59:155-160.
Miller RM, Chambers TL, Burns SP. Validating InBody® 570 multi-frequency bioelectrical impedance analyzer versus DXA for body fat percentage analysis. Med Sci Sport Exer. 2016;48:991.
Aimoto A, Matsumoto T. Noninvasive method for measuring the electrical properties of deep tissues using an open-ended coaxial probe. Med Eng Phys. 1996;18:641-646.
Alanen E, Lahtinen T, Nuutinen J. Variational formulation of open-ended coaxial line in contact with layered biological medium. IEEE Trans Biomed Eng. 1998;45:1241-1248.
Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41:2251-2269.
Nuutinen J, Ikaheimo R, Lahtinen T. Validation of a new dielectric device to assess changes of tissue water in skin and subcutaneous fat. Physiol Meas. 2004;25:447-454.
Stuchly MA, Athey TW, Samaras GM, Taylor GE. Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: part II - experimental results. IEEE Trans Microw Therory Techn. 1982;30:87-92.
Black MM, Bottoms E, Shuster S. Skin collagen and thickness in simple obesity. Br Med J. 1971;4:149-150.
Ishikawa T, Ishikawa O, Miyachi Y. Measurement of skin elastic properties with a new suction device (I): relationship to age, sex and the degree of obesity in normal individuals. J Dermatol. 1995;22:713-717.
Yosipovitch G, DeVore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56:901-916. quiz 917-920.
Guida B, Nino M, Perrino NR, et al. The impact of obesity on skin disease and epidermal permeability barrier status. J Eur Acad Dermatol Venereol. 2010;24:191-195.
Francischetti EA, Tibirica E, da Silva EG, Rodrigues E, Celoria BM, de Abreu VG. Skin capillary density and microvascular reactivity in obese subjects with and without metabolic syndrome. Microvasc Res. 2011;81:325-330.
Rossi M, Nannipieri M, Anselmino M, et al. Skin vasodilator function and vasomotion in patients with morbid obesity: effects of gastric bypass surgery. Obes Surg. 2011;21:87-94.
Boza JC, Trindade EN, Peruzzo J, Sachett L, Rech L, Cestari TF. Skin manifestations of obesity: a comparative study. J Eur Acad Dermatol Venereol. 2012;26:1220-1223.
Mirmirani P, Carpenter DM. Skin disorders associated with obesity in children and adolescents: a population-based study. Pediatr Dermatol. 2014;31:183-190.
Karimi K, Lindgren TH, Koch CA, Brodell RT. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev Endocr Metab Disord. 2016;17:389-403.
Matsumoto M, Ogai K, Aoki M, et al. Changes in dermal structure and skin oxidative stress in overweight and obese Japanese males after weight loss: a longitudinal observation study. Skin Res Technol. 2018;24:407-416.
Mayrovitz HN, Grammenos A, Corbitt K, Bartos S. Age-related changes in male forearm skin-to-fat tissue dielectric constant at 300 MHz. Clin Physiol Funct Imaging. 2017;37:198-204.
Mayrovitz HN, Corbitt K, Grammenos A, Abello A, Mammino J. Skin indentation firmness and tissue dielectric constant assessed in face, neck, and arm skin of young healthy women. Skin Res Technol. 2017;23:112-120.
Anand A, Balasubramanian D, Subramanian N, et al. Secondary lymphedema after head and neck cancer therapy: a review. Lymphology. 2018;51:109-118.
Deng J, Murphy BA, Dietrich MS, Sinard RJ, Mannion K, Ridner SH. Differences of symptoms in head and neck cancer patients with and without lymphedema. Support Care Cancer. 2016;24:1305-1316.
Purcell A, Nixon J, Fleming J, McCann A, Porceddu S. Measuring head and neck lymphedema: the "ALOHA" trial. Head Neck. 2016;38:79-84.
Contributed Indexing:
Keywords: bioimpedance; extracellular water; intracellular water; lymphedema; obesity; skin permittivity; skin water
Entry Date(s):
Date Created: 20190927 Date Completed: 20210105 Latest Revision: 20210105
Update Code:
20240105
DOI:
10.1111/srt.12784
PMID:
31556162
Czasopismo naukowe
Background: Skin tissue dielectric constant (TDC) measurements at a frequency of 300 MHz are used to assess skin properties in many conditions. Impacts of patient obesity on these values are unknown, and its quantitative assessment was the goal of this research.
Materials and Methods: Women in a weight loss program (N = 32) had TDC measured on forearm, biceps, neck, jowl, and submental regions along with measurements of total body fat (TBF), water (TBW), intracellular water (ICW), and extracellular water (ECW) via multi-frequency bioimpedance. Group age (mean ± SD) was 40.0 ± 11.6 years (20-70 years) with body mass index (BMI) of 31.8 ± 6.7 Kg/m 2 (23.0-49.9 Kg/m 2 ). For analysis, subjects were divided into those with BMI < 30 Kg/m 2 (subgroup A, n = 16) vs ≥30 Kg/m 2 (subgroup B, n = 16).
Results: Tissue dielectric constant at forearm and biceps decreased significantly (P < .001) with increasing depth from 0.5 to 1.5 to 2.5 mm but TDC values and their inter-side ratios did not differ between subgroups A and B at any measured site. Although correlations between TBW, ECW, and ICW were significant (P < .001), there was no dependence of TDC values on any of these parameters.
Conclusions: Previously unknown TDC values for obese persons are provided and based on subgroup analyses suggest that skin TDC values in overweight and obese persons are not confounded by variables such as TBW and TBF. Further, since inter-side ratios and their SD's yielded thresholds for forearm and biceps similar to those established for women with normal BMI, use of these clinical inter-arm TDC ratios now is extended to include a wider BMI range.
(© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies