Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

On Ising models and algorithms for the construction of symptom networks in psychopathological research.

Tytuł :
On Ising models and algorithms for the construction of symptom networks in psychopathological research.
Autorzy :
Brusco MJ; Department of Business Analytics, Information Systems and Supply Chain.
Steinley D; Department of Psychological Sciences.
Hoffman M; Department of Psychiatry and Behavioral Sciences.
Davis-Stober C; Department of Psychological Sciences.
Wasserman S; Department of Statistics.
Pokaż więcej
Źródło :
Psychological methods [Psychol Methods] 2019 Dec; Vol. 24 (6), pp. 735-753. Date of Electronic Publication: 2019 Oct 07.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Washington, DC : American Psychological Association, c1996-
MeSH Terms :
Algorithms*
Behavioral Symptoms*
Biomedical Research*/standards
Models, Statistical*
Psychopathology*/standards
Humans
Entry Date(s) :
Date Created: 20191008 Date Completed: 20200427 Latest Revision: 20200427
Update Code :
20201023
DOI :
10.1037/met0000207
PMID :
31589062
Czasopismo naukowe
During the past 5 to 10 years, an estimation method known as eLasso has been used extensively to produce symptom networks (or, more precisely, symptom dependence graphs) from binary data in psychopathological research. The eLasso method is based on a particular type of Ising model that corresponds to binary pairwise Markov random fields, and its popularity is due, in part, to an efficient estimation process that is based on a series of l ₁-regularized logistic regressions. In this article, we offer an unprecedented critique of the Ising model and eLasso . We provide a careful assessment of the conditions that underlie the Ising model as well as specific limitations associated with the eLasso estimation algorithm. This assessment leads to serious concerns regarding the implementation of eLasso in psychopathological research. Some potential strategies for eliminating or, at least, mitigating these concerns include (a) the use of partitioning or mixture modeling to account for unobserved heterogeneity in the sample of respondents, and (b) the use of co-occurrence measures for symptom similarity to either replace or supplement the covariance/correlation measure associated with eLasso . Two psychopathological data sets are used to highlight the concerns that are raised in the critique. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies