Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Motor cortex signals for each arm are mixed across hemispheres and neurons yet partitioned within the population response.

Tytuł:
Motor cortex signals for each arm are mixed across hemispheres and neurons yet partitioned within the population response.
Autorzy:
Ames KC; Department of Neuroscience, Columbia University, New York, United States.; Zuckerman Institute, Columbia University, New York, United States.; Grossman Center for the Statistics of Mind, Columbia University, New York, United States.; Center for Theoretical Neuroscience, Columbia University, New York, United States.
Churchland MM; Department of Neuroscience, Columbia University, New York, United States.; Zuckerman Institute, Columbia University, New York, United States.; Grossman Center for the Statistics of Mind, Columbia University, New York, United States.; Kavli Institute for Brain Science, Columbia University, New York, United States.
Źródło:
ELife [Elife] 2019 Oct 09; Vol. 8. Date of Electronic Publication: 2019 Oct 09.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
MeSH Terms:
Functional Laterality*
Movement*
Arm/*innervation
Motor Cortex/*physiology
Motor Neurons/*physiology
Animals ; Macaca mulatta ; Male
References:
Curr Biol. 2013 Feb 4;23(3):236-43. (PMID: 23290556)
Nat Methods. 2018 Oct;15(10):805-815. (PMID: 30224673)
J Neurophysiol. 2003 Feb;89(2):922-42. (PMID: 12574469)
J Comp Neurol. 1986 May 15;247(3):297-325. (PMID: 3722441)
Neuroscience. 1999 Mar;89(3):661-74. (PMID: 10199603)
J Physiol. 2001 Mar 15;531(Pt 3):849-59. (PMID: 11251064)
J Neurophysiol. 2007 Jun;97(6):4235-57. (PMID: 17376854)
J Neurophysiol. 2005 Mar;93(3):1209-22. (PMID: 15525809)
Gait Posture. 1998 Mar 1;7(2):131-141. (PMID: 10200383)
Exp Brain Res. 1990;82(1):219-21. (PMID: 2257909)
J Neurophysiol. 1988 Jul;60(1):325-43. (PMID: 3404223)
J Neurosci. 2009 Oct 14;29(41):12948-56. (PMID: 19828809)
J Neurophysiol. 2008 Feb;99(2):773-86. (PMID: 18094104)
Am J Physiol. 1984 Jun;246(6 Pt 2):R1000-4. (PMID: 6742155)
J Comp Neurol. 1977 Oct 15;175(4):391-438. (PMID: 410849)
J Physiol. 1992;453:525-46. (PMID: 1464843)
J Neurosci. 2014 Apr 2;34(14):5054-64. (PMID: 24695723)
J Neurophysiol. 2019 Feb 1;121(2):418-426. (PMID: 30517048)
J Neurosci. 1998 May 15;18(10):3870-96. (PMID: 9570816)
J Neurophysiol. 1978 Sep;41(5):1120-31. (PMID: 100584)
Exp Brain Res. 2002 Oct;146(3):322-35. (PMID: 12232689)
Eur J Neurosci. 2010 Jan;31(2):386-98. (PMID: 20074212)
Biol Cybern. 1985;51(5):347-56. (PMID: 3978150)
Brain. 1983 Sep;106 (Pt 3):675-705. (PMID: 6640276)
Somatosens Mot Res. 1998;15(4):287-308. (PMID: 9875547)
J Comp Neurol. 1979 Nov 1;188(1):137-45. (PMID: 115906)
Eur J Neurosci. 2002 Apr;15(8):1371-80. (PMID: 11994131)
Nature. 2016 Apr 28;532(7600):459-64. (PMID: 27074502)
J Physiol. 1982 Feb;323:245-65. (PMID: 7097574)
Elife. 2019 Oct 09;8:. (PMID: 31596230)
Neuron. 2018 Feb 21;97(4):953-966.e8. (PMID: 29398358)
Nat Neurosci. 2014 Dec;17(12):1784-1792. (PMID: 25383902)
Brain Res Cogn Brain Res. 1996 Mar;3(2):131-41. (PMID: 8713554)
Nat Neurosci. 2010 Mar;13(3):369-78. (PMID: 20173745)
J Neurosci. 2011 Aug 3;31(31):11208-19. (PMID: 21813682)
J Comp Neurol. 2009 Mar 10;513(2):151-63. (PMID: 19125408)
J Neurosci. 2010 Jan 6;30(1):350-60. (PMID: 20053916)
Philos Trans R Soc Lond B Biol Sci. 2014 Apr 28;369(1644):20130174. (PMID: 24778371)
Nature. 2013 Nov 7;503(7474):78-84. (PMID: 24201281)
Nat Neurosci. 2012 Nov;15(11):1498-505. (PMID: 23001062)
Nat Commun. 2016 Oct 27;7:13239. (PMID: 27807345)
Elife. 2019 Oct 18;8:. (PMID: 31625506)
Exp Brain Res. 1994;102(2):227-43. (PMID: 7705502)
Nature. 1998 Sep 17;395(6699):274-8. (PMID: 9751054)
Neuron. 2006 Dec 21;52(6):1085-96. (PMID: 17178410)
Neuron. 2011 Aug 11;71(3):555-64. (PMID: 21835350)
Nature. 2012 Jul 5;487(7405):51-6. (PMID: 22722855)
Curr Biol. 2012 Nov 20;22(22):2095-103. (PMID: 23084992)
Brain Res. 1981 Jan 5;204(1):29-42. (PMID: 7248755)
Nat Neurosci. 2012 Nov;15(11):1472-4. (PMID: 23103992)
Sci Rep. 2018 Jan 26;8(1):1710. (PMID: 29374242)
J Neurophysiol. 2002 Dec;88(6):3498-517. (PMID: 12466464)
Nat Neurosci. 2015 Jul;18(7):1025-33. (PMID: 26075643)
Elife. 2018 Aug 22;7:. (PMID: 30132759)
Brain. 1995 Apr;118 ( Pt 2):429-40. (PMID: 7735884)
Cereb Cortex. 2013 Jun;23(6):1362-77. (PMID: 22610393)
Neuron. 2010 Nov 4;68(3):387-400. (PMID: 21040842)
Science. 2005 Apr 29;308(5722):662-7. (PMID: 15860620)
Nat Neurosci. 2014 Mar;17(3):440-8. (PMID: 24487233)
Somatosens Mot Res. 2000;17(3):255-71. (PMID: 10994596)
Exp Brain Res. 1999 Sep;128(1-2):149-59. (PMID: 10473753)
Grant Information:
1U19NS104649 United States NS NINDS NIH HHS; U19 NS104649 United States NS NINDS NIH HHS; R01 NS100066 United States NS NINDS NIH HHS; P30 EY019007 United States EY NEI NIH HHS; CRCNS R01 NS100066 United States NH NIH HHS; 1DP2NS083037 United States NS NINDS NIH HHS; DP2 NS083037 United States NS NINDS NIH HHS
Contributed Indexing:
Keywords: arm movement; bimanual; motor cortex; neuroscience; rhesus macaque; state space
Entry Date(s):
Date Created: 20191010 Date Completed: 20200211 Latest Revision: 20240216
Update Code:
20240216
PubMed Central ID:
PMC6785221
DOI:
10.7554/eLife.46159
PMID:
31596230
Czasopismo naukowe
Motor cortex (M1) has lateralized outputs, yet neurons can be active during movements of either arm. What is the nature and role of activity across the two hemispheres? We recorded muscles and neurons bilaterally while monkeys cycled with each arm. Most neurons were active during movement of either arm. Responses were strongly arm-dependent, raising two possibilities. First, population-level signals might differ depending on the arm used. Second, the same population-level signals might be present, but distributed differently across neurons. The data supported this second hypothesis. Muscle activity was accurately predicted by activity in either the ipsilateral or contralateral hemisphere. More generally, we failed to find signals unique to the contralateral hemisphere. Yet if signals are shared across hemispheres, how do they avoid impacting the wrong arm? We found that activity related to each arm occupies a distinct subspace, enabling muscle-activity decoders to naturally ignore signals related to the other arm.
Competing Interests: KA, MC No competing interests declared
(© 2019, Ames and Churchland.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies